Influence of Cu L-Histidinate Schiff Base Derivatives on Structural Features of Irradiated Rat’s DNA

Rastogi R. P., Richa, Kumar A., Tyagi M. B., Sinha R. P (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Journal of Nucleic Acids. Published online, https://doi.org/10.4061/2010/592980.

Obrador, E., & Montoro, A. L. (2023). Ionizing radiation, antioxidant response and oxidative damage: Radiomodulators. Antioxidants, 12(6), 1219 https://doi.org/10.3390/antiox12061219.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, S. K., Wang, M., Staud, C. T. & Iliakis, G. (2011). Post-irradiation chemical processing of DNA damage generates double-strand breaks in cells already engaged in repair. Nucleic Acids Research, 39, 8416–8429. https://doi.org/10.1093/nar/gkr463.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shikazono, N., Noguchi, M., Fujii, K., Urushibara, A., & Yokoya, A. (2009). The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation. Journal of Radiation Research, 50, 27–36. https://doi.org/10.1269/jrr.08086.

Article  CAS  PubMed  Google Scholar 

Sutherland, B. M., Bennett, P. V., Sidorkina, O., & Lava, J. (2000). Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proceedings of the National Academy of Sciences, 97, 103–108. https://doi.org/10.1073/pnas.97.1.103.

Article  CAS  Google Scholar 

Reisz J. A., Bansal N., Qian J., Zhao W., & Furdui C. M. (2014) Effects of ionizing radiation on biological molecules-mechanisms of damage and emerging methods of detection. Antioxidants & Redox Signaling, 260-292. https://doi.org/10.1089/ars.2013.5489

Nair, C. K. K., Parida, D. K. & Nomura, T. (2001). Radioprotectors in radiotherapy. Journal of Radiation Research., 42, 21–37. https://doi.org/10.1269/jrr.42.21.

Article  CAS  PubMed  Google Scholar 

Ershov, D. S., Paston, S. V., Kartsova, L. A., Alekseeva, A. V., Ganzha, O. V., & Kasyanenko, N. A. (2011). Investigation of the radioprotective properties of some tea polyphenols. Structural Chemistry, 22, 475–482. https://doi.org/10.1007/s11224-011-9765-4.

Article  CAS  Google Scholar 

Lihua J., Pengfei C., Shuwen Z., Lin Q., Huang H., Wang Ch, Wang J. Advances of amifostine in radiation protection: Administration and delivery https://doi.org/10.1021/acs.molpharmaceut.3c00600.

Sorenson, J. R. J.(2002). Cu, Fe, Mn, and Zn chelates offer a medicinal chemistry approach to overcoming radiation injury. Current Medicinal Chemistry, 9, 639–662. https://doi.org/10.2174/0929867023370725.

Article  CAS  PubMed  Google Scholar 

Suksrichavalit, T., Prachayasittikul, S., & Piacham, T., et al. (2008). Copper complexes of nicotinic-aromatic carboxylic acids as superoxide dismutase mimetics. Molecules, 13(12), 3040–3056. https://doi.org/10.3390/molecules13123040.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suksrichavalit, T., Prachayasittikul, S. & Nantasenamat, C. et al. (2009). Copper complexes of pyridine derivatives with superoxide scavenging and antimicrobial activities. European Journal of Medicinal Chemistry, 44(8), 3259–3265. https://doi.org/10.1016/j.ejmech.2009.03.033.

Article  CAS  PubMed  Google Scholar 

Karapetyan, N. H., Malakyan, M. H., Bajinyan, S. A., Torosyan, A. L., Grigoryan, I. E. & Haroutiunian, S. G. (2013). Influence of amino acids shiff bases on irradiated DNA stability in vivo. Cell Biochemistry and Biophysics, 67, 1137–1145. https://doi.org/10.1007/s12013-013-9617-5.

Article  CAS  PubMed  Google Scholar 

Karapetyan, N. H., Torosyan, A. L., Malakyan, M. H., Bajinyan, S. A., & Haroutiunian, S. G. (2016). Investigation of irradiated rats DNA in the presence of Cu(II) chelates of amino acids Schiff bases. Journal of Biomolecular Structure and Dynamics., 34, 177–183. https://doi.org/10.1080/07391102.2015.1020876.

Article  CAS  PubMed  Google Scholar 

Jomova, K., Makova, M., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., & Kuca, K., et al. (2022). Essential metals in health and disease. Chemico-Biological Interactions., 367, 110173 https://doi.org/10.1016/j.cbi.2022.110173.

Article  CAS  PubMed  Google Scholar 

Malakyan, МН, Bajinyan, S. A., Matosyan, V. H., Tonoyan, V. J., & Babayan, K. N. (2016). Synthesis, characterization and toxicity studies of pyridinecarboxaldehydes and L-tryptophan derived Schiff bases and corresponding copper (II) complexes. F1000 Research, 5, 1921 https://doi.org/10.12688/f1000research.9226.1.

Article  PubMed  PubMed Central  Google Scholar 

Lando, D. Y., & Teif, V. B. (2002). Modeling of DNA condensation and decondensation caused by ligand binding. Journal of Biomolecular Srtucture and Dynamics., 20, 215–222. https://doi.org/10.1080/07391102.2002.10506837.

Article  CAS  Google Scholar 

Šponer, J., Šponer, J. E., Mládek, A., Jurečka, P., Banáš, P., & Otyepka, M. (2013). Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment. Biopolymers., 99, 978–988. https://doi.org/10.1002/bip.22322.

Article  CAS  PubMed  Google Scholar 

Lee, P. Y., Costumbrado, J., Hsu, C.-Y. & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments, 62, 3923. https://doi.org/10.3791/3923.

Article  CAS  Google Scholar 

Vologodskii, A., & Frank-Kamenetskii, M. D. (2018). DNA melting and energetics of the double helix. Physics of Life Reviews., 25, 1–21. https://doi.org/10.1016/j.plrev.2017.11.012.

Article  PubMed  Google Scholar 

Morozova, O. B., Kiryutin, A. S., Sagdeev, R. Z. & Yurkovskaya, A. V. (2007). Electron transfer between guanosine radical and amino acids in aqueous solution. 1. reduction of guanosine radical by tyrosinev. The Journal of Physical Chemistry B, 111, 7439–7448. https://doi.org/10.1021/jp067722i.

Article  CAS  PubMed  Google Scholar 

Morozova, O. B., Kiryutin, A. S., & Yurkovskaya, A. V. (2008). Electron transfer between guanosine radicals and amino acids in aqueous solution. II. Reduction of guanosine radicals by tryptophan. Journal of Physical Chemistry, B 112, 2747–2754. https://doi.org/10.1021/jp0752318.

Article  CAS  Google Scholar 

Ward, J. F.(1988). DNA damage produced by ionizing radiation in mammalian cells: Identities, mechanisms of formation, and reparability. Progress in Nucleic Acid Research and Molecular Biology, 35, 95–125. https://doi.org/10.1016/S0079-6603(08)60611-X.

Article  CAS  PubMed  Google Scholar 

Nikjoo, H., O’Neill, P., Terrissol, M. & Goodhead, D. T. (1994). Modelling of radiation-induced DNA damage: The early physical and chemical event. International Journal of Radiation Biology, 66, 453–457. https://doi.org/10.1080/09553009414551451.

Article  CAS  PubMed  Google Scholar 

Johnke, R. M., Sattler, J. A., & Allison, R. R. (2014). Radioprotective agents for radiation therapy: future trends. Future Oncology, 10(15), 2345–2357. https://doi.org/10.2217/fon.14.175.

Article  CAS  PubMed  Google Scholar 

Reyes-Arellano, A., Gómez-García, O. & Torres-Jaramillo, J. (2016). Synthesis of azolines and imidazoles and their use in drug design. Journal of Medicinal Chemistry, 6, 561–570. https://doi.org/10.4172/2161-0444.1000400.

Article  CAS  Google Scholar 

Verma A., Joshi S., Singh D. (2013) Imidazole: having versatile biological activities. New Journal of Chemistry 1-12. https://doi.org/10.1155/2013/329412.

Malakyan M. H., Dallakyan A., Bajinyan S. A., Tonoyan V., Ayvazyan V., Karapetyan N. H. (2017) Development of potential radioprotective agents for use in field exposure situations. International Conference. BRITE “Biomarkers of Radiation In The Environment: Robust tools for risk assessment” 2017, Yerevan, Armenia, p. 22.

Kalfas, C. A., Loukakis, G. K., Georgakilas, A. G., Sideris, E. G., & Anagnostopoulou -Konsta, A. (1996). Flexibility and thermal denaturation (melting) of irradiated DNA. Journal of Biological Systems, 4, 405–423. https://doi.org/10.1142/S0218339096000272.

Article  Google Scholar 

Tankovskaia, S. A., Kotb, O. M., Dommes, O. A. & Paston, S. V. (2018). DNA damage induced by gamma-radiation revealed from UV absorption spectroscopy. Journal of Physics: Conference Series, 1038, 1–6. https://doi.org/10.1088/1742-6596/1038/1/012027.

Article  CAS  Google Scholar 

Torudd, J., Protopopova, M., Sarimov, R., Nygren, J., Eriksson, S., & Marková, E., et al. (2005). Dose-response for radiation-induced apoptosis, residual 53BP1 foci and DNA-loop relaxation in human lymphocytes. International Journal of Radiation Biology., 8, 125–138. https://doi.org/10.1080/09553000500077211.

Article  CAS  Google Scholar 

Bakayev, V. V., Yugai, A. A., & Luchnik, A. N. (1985). Effect of X-ray induced DNA damage on DNAase I hypersensitivity of SV40 chromatin: relation to elastic torsional strain in DNA. Nucleic Acids Research., 13, 7079–7093. https://doi.org/10.1093/nar/13.19.7079.

Article 

留言 (0)

沒有登入
gif