Evaluating the immunologically “cold” tumor microenvironment after treatment with immune checkpoint inhibitors utilizing PET imaging of CD4 + and CD8 + T cells in breast cancer mouse models

Hanahan D. Hallmarks of Cancer: New dimensions. Cancer Discov. 2022;12:31–46.

Article  CAS  PubMed  Google Scholar 

Semiglazov V, Tseluiko A, Kudaybergenova A, Artemyeva A, Krivorotko P, Donskih R. Immunology and immunotherapy in breast cancer. Cancer Biol Med. 2022;19:609–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nathan MR, Schmid P. The emerging world of breast cancer immunotherapy. Breast (Edinburgh Scotland). 2018;37:200–6.

Article  PubMed  Google Scholar 

Farhood B, Najafi M, Mortezaee K. CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol. 2019;234:8509–21.

Article  CAS  PubMed  Google Scholar 

Borst J, Ahrends T, Babala N, Melief CJM, Kastenmuller W. CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18:635–47.

Article  CAS  PubMed  Google Scholar 

Larimer BM, Wehrenberg-Klee E, Dubois F, Mehta A, Kalomeris T, Flaherty K, et al. Granzyme B PET imaging as a predictive biomarker of Immunotherapy Response. Cancer Res. 2017;77:2318–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol. 2021;18:842–59.

Article  CAS  PubMed  Google Scholar 

Farwell MD, Gamache RF, Babazada H, Hellmann MD, Harding JJ, Korn R, et al. CD8-Targeted PET imaging of Tumor-infiltrating T cells in patients with Cancer: a phase I first-in-humans study of (89)Zr-Df-IAB22M2C, a radiolabeled Anti-CD8 Minibody. J Nucl Med. 2022;63:720–6.

CAS  PubMed  PubMed Central  Google Scholar 

Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4(+) T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther. 2021;28:5–17.

Article  CAS  PubMed  Google Scholar 

Balança CC, Salvioni A, Scarlata CM, Michelas M, Martinez-Gomez C, Gomez-Roca C et al. PD-1 blockade restores helper activity of tumor-infiltrating, exhausted PD-1hiCD39 + CD4 T cells. JCI Insight 2021;6.

Zuazo M, Arasanz H, Bocanegra A, Fernandez G, Chocarro L, Vera R, et al. Systemic CD4 immunity as a key contributor to PD-L1/PD-1 Blockade Immunotherapy Efficacy. Front Immunol. 2020;11:586907.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med. 2019;17:90.

Article  PubMed  PubMed Central  Google Scholar 

Tavaré R, Escuin-Ordinas H, Mok S, McCracken MN, Zettlitz KA, Salazar FB, et al. An effective Immuno-PET Imaging Method to monitor CD8-Dependent responses to Immunotherapy. Cancer Res. 2016;76:73–82.

Article  PubMed  Google Scholar 

Pesapane F, Suter MB, Rotili A, Penco S, Nigro O, Cremonesi M, et al. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Med Oncol. 2020;37:29.

Article  PubMed  Google Scholar 

Miladinova D. Molecular imaging in breast Cancer. Nucl Med Mol Imaging. 2019;53:313–9.

Article  PubMed  PubMed Central  Google Scholar 

Ma G, Liu C, Lian W, Zhang Y, Yuan H, Zhang Y, et al. (18)F-FLT PET/CT imaging for early monitoring response to CDK4/6 inhibitor therapy in triple negative breast cancer. Ann Nucl Med. 2021;35:600–7.

Article  CAS  PubMed  Google Scholar 

Lu Y, Li M, Massicano AVF, Song PN, Mansur A, Heinzman KA et al. [(89)Zr]-Pertuzumab PET Imaging reveals Paclitaxel Treatment Efficacy is positively correlated with HER2 expression in human breast Cancer Xenograft Mouse models. Molecules 2021;26.

Rashidian M, Ingram JR, Dougan M, Dongre A, Whang KA, LeGall C, et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med. 2017;214:2243–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanker AB, Estrada MV, Bianchini G, Moore PD, Zhao J, Cheng F, et al. Extracellular Matrix/Integrin Signaling Promotes Resistance to combined inhibition of HER2 and PI3K in HER2(+) breast Cancer. Cancer Res. 2017;77:3280–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gallegos C, lu Y, Clements J, Song P, Lynch S, Mascioni A, et al. [ 89 Zr]-CD8 ImmunoPET imaging of glioblastoma multiforme response to combination oncolytic viral and checkpoint inhibitor immunotherapy reveals CD8 infiltration differential changes in preclinical models. Theranostics. 2024;14:911–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu Y, Massicano AVF, Gallegos CA, Heinzman KA, Parish SW, Warram JM, et al. Evaluating the Accuracy of FUCCI Cell cycle in vivo fluorescent imaging to assess Tumor Proliferation in Preclinical Oncology models. Mol Imaging Biol; 2022.

Snipstad S, Bremnes F, Dehli Haugum M, Sulheim E. Characterization of immune cell populations in syngeneic murine tumor models. Cancer Med. 2023;12:11589–601.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perrone M, Talarico G, Chiodoni C, Sangaletti S. Impact of Immune Cell Heterogeneity on HER2 + breast Cancer prognosis and response to Therapy. Cancers (Basel) 2021;13.

Swoboda A, Nanda R. Immune checkpoint blockade for breast Cancer. Cancer Treat Res. 2018;173:155–65.

Article  PubMed  PubMed Central  Google Scholar 

Sher A, Lacoeuille F, Fosse P, Vervueren L, Cahouet-Vannier A, Dabli D, et al. For avid glucose tumors, the SUV peak is the most reliable parameter for [(18)F]FDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res. 2016;6:21.

Article  PubMed  PubMed Central  Google Scholar 

Li F, Li C, Cai X, Xie Z, Zhou L, Cheng B, et al. The association between CD8 + tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: a systematic review and meta-analysis. EClinicalMedicine. 2021;41:101134.

Article  PubMed  PubMed Central  Google Scholar 

Kristensen LK, Fröhlich C, Christensen C, Melander MC, Poulsen TT, Galler GR, et al. CD4(+) and CD8a(+) PET imaging predicts response to novel PD-1 checkpoint inhibitor: studies of Sym021 in syngeneic mouse cancer models. Theranostics. 2019;9:8221–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 2021;11:5365–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, van den Bosch T, et al. The PD-1/PD-L1-Checkpoint restrains T cell immunity in Tumor-Draining Lymph Nodes. Cancer Cell. 2020;38:685–e7008.

Article  CAS  PubMed  Google Scholar 

Nagasaki J, Togashi Y, Sugawara T, Itami M, Yamauchi N, Yuda J, et al. The critical role of CD4 + T cells in PD-1 blockade against MHC-II-expressing tumors such as classic Hodgkin lymphoma. Blood Adv. 2020;4:4069–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018;8:1069–86.

Article  PubMed  Google Scholar 

Zuazo M, Arasanz H, Bocanegra A, Chocarro L, Vera R, Escors D, et al. Systemic CD4 immunity: a powerful clinical biomarker for PD-L1/PD-1 immunotherapy. EMBO Mol Med. 2020;12:e12706.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med. 2013;210:1695–710.

留言 (0)

沒有登入
gif