Magnesium malate-modified calcium phosphate bone cement promotes the repair of vertebral bone defects in minipigs via regulating CGRP

Parreira PCS, Maher CG, Megale RZ, March L, Ferreira ML. An overview of clinical guidelines for the management of vertebral compression fracture: a systematic review. Spine J. 2017;17:1932–8.

Article  PubMed  Google Scholar 

Salari N, Darvishi N, Bartina Y, Larti M, Kiaei A, Hemmati M, Shohaimi S, Mohammadi M. Global prevalence of osteoporosis among the world older adults: a comprehensive systematic review and meta-analysis. J Orthop Surg Res. 2021;16:669.

Article  PubMed  PubMed Central  Google Scholar 

Choi SH, Kim DY, Koo JW, Lee SG, Jeong SY, Kang CN. Incidence and Management Trends of Osteoporotic Vertebral Compression fractures in South Korea: a Nationwide Population-based study. Asian Spine J. 2020;14:220–8.

Article  PubMed  Google Scholar 

Zheng XQ, Xu L, Huang J, Zhang CG, Yuan WQ, Sun CG, Zhang ZS, Wei C, Wang JX, Cummings SR, et al. Incidence and cost of vertebral fracture in urban China: a 5-year population-based cohort study. Int J Surg. 2023;109:1910–8.

PubMed  PubMed Central  Google Scholar 

Lee BG, Choi JH, Kim DY, Choi WR, Lee SG, Kang CN. Risk factors for newly developed osteoporotic vertebral compression fractures following treatment for osteoporotic vertebral compression fractures. Spine J. 2019;19:301–5.

Article  PubMed  Google Scholar 

Kim DH, Vaccaro AR. Osteoporotic compression fractures of the spine; current options and considerations for treatment. Spine J. 2006;6:479–87.

Article  PubMed  Google Scholar 

Hu L, Sun H, Wang H, Cai J, Tao Y, Feng X, Wang Y. Cement injection and postoperative vertebral fractures during vertebroplasty. J Orthop Surg Res. 2019;14:228.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown WE. A new calcium phosphate settimg cement. J Dent Res. 1983;62:672.

Google Scholar 

Brown WK. Universal fragmentation. Astrophys Space Sci. 1986;121:351–5.

Article  CAS  Google Scholar 

Fang H, Zhu D, Yang Q, Chen Y, Zhang C, Gao J, Gao Y. Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration. J Nanobiotechnol. 2022;20:26.

Article  CAS  Google Scholar 

Bohner M. Reactivity of calcium phosphate cements. J Mater Chem 2007, 17.

Schroter L, Kaiser F, Stein S, Gbureck U, Ignatius A. Biological and mechanical performance and degradation characteristics of calcium phosphate cements in large animals and humans. Acta Biomater. 2020;117:1–20.

Article  PubMed  Google Scholar 

Cai P, Lu S, Yu J, Xiao L, Wang J, Liang H, Huang L, Han G, Bian M, Zhang S, et al. Injectable nanofiber-reinforced bone cement with controlled biodegradability for minimally-invasive bone regeneration. Bioact Mater. 2023;21:267–83.

CAS  PubMed  Google Scholar 

Bian Y, Hu T, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Feng B, Liang R, Tan C, Weng X. Bone tissue engineering for treating osteonecrosis of the femoral head. Explor (Beijing). 2023;3:20210105.

CAS  Google Scholar 

van de Watering FC, Molkenboer-Kuenen JD, Boerman OC, van den Beucken JJ, Jansen JA. Differential loading methods for BMP-2 within injectable calcium phosphate cement. J Control Release. 2012;164:283–90.

Article  PubMed  Google Scholar 

Zuo Y, Yang F, Wolke JG, Li Y, Jansen JA. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomater. 2010;6:1238–47.

Article  CAS  PubMed  Google Scholar 

Qian G, Fan P, He F, Ye J. Novel strategy to accelerate bone regeneration of calcium phosphate cement by incorporating 3D plotted poly(lactic-co-glycolic acid) network and Bioactive Wollastonite. Adv Healthc Mater. 2019;8:e1801325.

Article  PubMed  Google Scholar 

Xu HH, Quinn JB. Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity. Biomaterials. 2002;23:193–202.

Article  PubMed  Google Scholar 

Zhou R, Guo Q, Xiao Y, Guo Q, Huang Y, Li C, Luo X. Endocrine role of bone in the regulation of energy metabolism. Bone Res. 2021;9:25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin YH, Lee AK, Ho CC, Fang MJ, Kuo TY, Shie MY. The effects of a 3D-printed magnesium-/strontium-doped calcium silicate scaffold on regulation of bone regeneration via dual-stimulation of the AKT and WNT signaling pathways. Biomater Adv. 2022;133:112660.

Article  CAS  PubMed  Google Scholar 

de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95:1–46.

Article  PubMed  Google Scholar 

Tan S, Wang Y, Du Y, Xiao Y, Zhang S. Injectable bone cement with magnesium-containing microspheres enhances osteogenesis via anti-inflammatory immunoregulation. Bioact Mater. 2021;6:3411–23.

CAS  PubMed  PubMed Central  Google Scholar 

Wu J, Liu F, Wang Z, Liu Y, Zhao X, Fang C, Leung F, Yeung KWK, Wong TM. The development of a magnesium-releasing and long-term mechanically stable calcium phosphate bone cement possessing osteogenic and Immunomodulation effects for promoting bone fracture regeneration. Front Bioeng Biotechnol. 2021;9:803723.

Article  PubMed  Google Scholar 

Bastian O, Pillay J, Alblas J, Leenen L, Koenderman L, Blokhuis T. Systemic inflammation and fracture healing. J Leukoc Biol. 2011;89:669–73.

Article  CAS  PubMed  Google Scholar 

Batoon L, Millard SM, Wullschleger ME, Preda C, Wu AC, Kaur S, Tseng HW, Hume DA, Levesque JP, Raggatt LJ, Pettit AR. CD169(+) macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials. 2019;196:51–66.

Article  CAS  PubMed  Google Scholar 

Xuan Y, Guo Y, Li L, Yuzhang, Zhang C, RuiJin, Yin X, Zhang Z. 3D-printed bredigite scaffolds with ordered arrangement structures promote bone regeneration by inducing macrophage polarization in onlay grafts. J Nanobiotechnol. 2024;22:102.

Article  CAS  Google Scholar 

Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019;196:80–9.

Article  CAS  PubMed  Google Scholar 

Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab. 2010;21:294–301.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Radi ZA, Khan NK. Effects of cyclooxygenase inhibition on bone, tendon, and ligament healing. Inflamm Res. 2005;54:358–66.

Article  CAS  PubMed  Google Scholar 

Raisz LG, Woodiel FN. Effects of selective prostaglandin EP2 and EP4 receptor agonists on bone resorption and formation in fetal rat organ cultures. Prostaglandins Other Lipid Mediat. 2003;71:287–92.

Article  CAS  PubMed  Google Scholar 

Gao Q, Zhan P, Alander CB, Kream BE, Hao C, Breyer MD, Pilbeam CC, Raisz LG. Effects of global or targeted deletion of the EP4 receptor on the response of osteoblasts to prostaglandin in vitro and on bone histomorphometry in aged mice. Bone. 2009;45:98–103.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Xu J, Ruan YC, Yu MK, O’Laughlin M, Wise H, Chen D, Tian L, Shi D, Wang J, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22:1160–9.

Article  PubMed  PubMed Central  Google Scholar 

Mi J, Xu JK, Yao Z, Yao H, Li Y, He X, Dai BY, Zou L, Tong WX, Zhang XT et al. Implantable Electrical stimulation at dorsal Root ganglions accelerates osteoporotic fracture Healing via Calcitonin Gene-related peptide. Adv Sci 2021, 9.

Ye L, Xu J, Mi J, He X, Pan Q, Zheng L, Zu H, Chen Z, Dai B, Li X, et al. Biodegradable magnesium combined with distraction osteogenesis synergistically stimulates bone tissue regeneration via CGRP-FAK-VEGF signaling axis. Biomaterials. 2021;275:120984.

Article  Google Scholar 

Xu H, Wang C, Tian F, Wang Z, Shi Z, Huang D, Song Z, Zhu L, Jia S, He B, Hao D. Physico-chemical and biological pr

留言 (0)

沒有登入
gif