Phage-based delivery systems: engineering, applications, and challenges in nanomedicines

Ju Z, Sun W. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv. 2017;24:1898–908.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma Y, Nolte RJ, Cornelissen JJ. Virus-based nanocarriers for drug delivery. Adv Drug Deliv Rev. 2012;64:811–25.

Article  CAS  PubMed  Google Scholar 

Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharmaceut. 2021. https://doi.org/10.1016/j.ijpharm.2021.120571.

Article  Google Scholar 

Ullah A, Wang K, Wu P, Oupicky D, Sun M. <p>CXCR4-targeted liposomal mediated co-delivery of pirfenidone and AMD3100 for the treatment of TGF&beta;-induced HSC-T6 cells activation</p>. Int J Nanomed. 2019;14:2927–44.

Article  CAS  Google Scholar 

Pugazhendhi A, Edison T, Karuppusamy I, Kathirvel B. Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm. 2018;539:104–11.

Article  CAS  PubMed  Google Scholar 

Gao J, Wang W-Q, Pei Q, Lord MS, Yu H-J. Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy. Acta Pharmacol Sin. 2020;41:986–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeon M, Lin G, Stephen ZR, Kato FL, Zhang M. Paclitaxel-loaded iron oxide nanoparticles for targeted breast cancer therapy. Adv Ther. 2019. https://doi.org/10.1002/adtp.201900081.

Article  Google Scholar 

Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem. 2019;7:167.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maksoudian C, Saffarzadeh N, Hesemans E, Dekoning N, Buttiens K, Soenen SJ. Role of inorganic nanoparticle degradation in cancer therapy. Nanoscale Adv. 2020;2:3734–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int. 2014;2014:180549.

Article  PubMed  PubMed Central  Google Scholar 

Miao Y, Yang T, Yang S, Yang M, Mao C. Protein nanoparticles directed cancer imaging and therapy. Nano Converg. 2022;9:2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaur T, Nafissi N, Wasfi O, Sheldon K, Wettig S, Slavcev R. Immunocompatibility of bacteriophages as nanomedicines. J Nanotechnol. 2012;2012:1–13.

Article  Google Scholar 

Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol. 2020;18:125–38.

Article  CAS  PubMed  Google Scholar 

Monteiro R, Pires DP, Costa AR, Azeredo J. Phage therapy: going temperate? Trends Microbiol. 2019;27:368–78.

Article  CAS  PubMed  Google Scholar 

Hsu BB, Way JC, Silver PA. Stable neutralization of a virulence factor in bacteria using temperate phage in the mammalian gut. mSystems. 2020. https://doi.org/10.1128/mSystems.00013-20.

Article  PubMed  PubMed Central  Google Scholar 

Huh H, Wong S, St Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: therapeutic applications. Adv Drug Deliv Rev. 2019;145:4–17.

Article  CAS  PubMed  Google Scholar 

Ulfo L, Cantelli A, Petrosino A, Costantini PE, Nigro M, Starinieri F, Turrini E, Zadran SK, Zuccheri G, Saporetti R, Di Giosia M, Danielli A, Calvaresi M. Orthogonal nanoarchitectonics of M13 phage for receptor targeted anticancer photodynamic therapy. Nanoscale. 2022;14:632–41.

Article  CAS  PubMed  Google Scholar 

Smith GP, Petrenko VA. Phage display. Chem Rev. 1997;97:391–410.

Article  CAS  PubMed  Google Scholar 

Peng H, Borg RE, Dow LP, Pruitt BL, Chen IA. Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages. Proc Natl Acad Sci U S A. 2020;117:1951–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh D, Kohli AG, Moser F, Endy D, Belcher AM. Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery. ACS Synth Biol. 2012;1:576–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foglizzo V, Marchio S. Bacteriophages as therapeutic and diagnostic vehicles in cancer. Pharmaceuticals (Basel). 2021. https://doi.org/10.3390/ph14020161.

Article  PubMed  Google Scholar 

Jiang H, Li Y, Cosnier S, Yang M, Sun W, Mao C. Exploring phage engineering to advance nanobiotechnology. Mater Today Nano. 2022. https://doi.org/10.1016/j.mtnano.2022.100229.

Article  Google Scholar 

D’Herelle F. On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D’Herelle, presented by Mr. Roux. 1917. Res Microbiol. 2007;158:553–4.

Article  PubMed  Google Scholar 

Sunderland KS, Yang M, Mao C. Phage-enabled nanomedicine: from probes to therapeutics in precision medicine. Angew Chem Int Ed Engl. 2017;56:1964–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang W, Hu E, Wang Y, Miao S, Liu Y, Hu Y, Liu J, Xu B, Chen D, Shen Y. Emerging antibacterial strategies with application of targeting drug delivery system and combined treatment. Int J Nanomed. 2021;16:6141–56.

Article  Google Scholar 

Branston SD, Wright J, Keshavarz-Moore E. A non-chromatographic method for the removal of endotoxins from bacteriophages. Biotechnol Bioeng. 2015;112:1714–9.

Article  CAS  PubMed  Google Scholar 

Kondratova L, Kondratov O, Ragheb R, Zolotukhin S. Removal of endotoxin from rAAV samples using a simple detergent-based protocol. Mol Ther Methods Clin Dev. 2019;15:112–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Guo Y, Aoqi L, Ma C, Xiong Z, Yuan D, Zhang C, Zhang J, Dun Y. Changes of colon in rats with different ages in response to lipopolysaccharide. Curr Med Chem. 2023;30:4492–503.

Article  CAS  PubMed  Google Scholar 

Hodyra-Stefaniak K, Miernikiewicz P, Drapala J, Drab M, Jonczyk-Matysiak E, Lecion D, Kazmierczak Z, Beta W, Majewska J, Harhala M, Bubak B, Klopot A, Gorski A, Dabrowska K. Mammalian Host-Versus-Phage immune response determines phage fate in vivo. Sci Rep. 2015;5:14802.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim BO, Kim ES, Yoo YJ, Bae HW, Chung IY, Cho YH. Phage-derived antibacterials: harnessing the simplicity plasticity, and diversity of phages. Viruses. 2019;11:268.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skurnik M, Pajunen M, Kiljunen S. Biotechnological challenges of phage therapy. Biotechnol Lett. 2007;29:995–1003.

Article  CAS 

留言 (0)

沒有登入
gif