Current trends and future directions for the synthesis and pharmacological applications of 2-(2-cyanopyrrolidin-1-yl)-N-3-hydroxyadamantan-1-yl) acetamide (Gliptins)

Lai ZW, Li C, Liu J, Kong L, Wen X, Sun H. Discovery of highly potent DPP-4 inhibitors by hybrid compound design based on linagliptin and alogliptin. Eur J Med Chem. 2014;83:547–60. https://doi.org/10.1016/j.ejmech.2014.06.044

Article  CAS  PubMed  Google Scholar 

Sneha P, Doss CGP. Gliptins in managing diabetes - reviewing computational strategy. Life Sci. 2016;166:108–20. https://doi.org/10.1016/j.lfs.2016.10.009

Article  CAS  PubMed  Google Scholar 

Hu N, Zhao G, Zhang Y, Liu X, Li G, Tang W. Synthesis of chiral α-amino tertiary boronic esters by enantioselective hydroboration of α-arylenamides. J Am Chem Soc. 2015;137:6746–9. https://doi.org/10.1021/jacs.5b03760

Article  CAS  PubMed  Google Scholar 

Plescia J, Moitessier N. Design and discovery of boronic acid drugs. Eur J Med Chem. 2020;195:112270. https://doi.org/10.1016/j.ejmech.2020.112270

Article  CAS  PubMed  Google Scholar 

Kim MK, Chae YN, Kim HD, Yang EK, Cho EJ, Choi SH, et al. DA-1229, a novel and potent DPP-4 inhibitor, improves insulin resistance and delays the onset of diabetes. Life Sci. 2012;90:21–29. https://doi.org/10.1016/j.lfs.2011.10.007

Article  CAS  PubMed  Google Scholar 

Choi SH, Park S, Oh CJ, Leem J, Park KG, Lee IK, et al. Dipeptidyl peptidase-4 inhibition by gemigliptin prevents abnormal vascular remodeling via NF-E2-related factor 2 activation. Vasc Pharmacol 2015;73:11–19. https://doi.org/10.1016/j.vph.2015.07.005

Article  CAS  Google Scholar 

Shu C, Ge H, Song M, Chen JH, Zhou H, Qi Q, et al. Discovery of imigliptin, a novel selective DPP-4 inhibitor for the treatment of type 2 diabetes. ACS Med Chem Lett 2014;5:921–6. https://doi.org/10.1021/ml5001905

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou A, Deng Z, Ma H, Liu T. Substrate screening of amino transaminase for the synthesis of a sitagliptin intermediate. Tetrahedron. 2016;72:4660–4. https://doi.org/10.1016/j.tet.2016.06.039

Article  CAS  Google Scholar 

Zhou Y, Liu Y, Wang X, He X, Wang Y. Method for preparing an important intermediate of Linagliptn. US patent. 2016;9:522–915 B2.

Google Scholar 

Łupina M, Talarek S, Kotlińska J, Gibuła-Tarłowska E, Listos P, Listos J, et al. The role of linagliptin, a selective dipeptidyl peptidase-4 inhibitor, in the morphine rewarding effects in rats. Neurochem Int 2020;133:1–9. https://doi.org/10.1016/j.neuint.2019.104616

Article  CAS  Google Scholar 

Sarashina A, Chiba K, Tatami S, Kato Y. Physiologically based pharmacokinetic model of the DPP-4 inhibitor linagliptin to describe its nonlinear pharmacokinetics in humans. J Pharm Sci. 2020;109:2336–44. https://doi.org/10.1016/j.xphs.2020.03.031

Article  CAS  PubMed  Google Scholar 

Chung JY, Scott JP, Anderson C, Bishop B, Bremeyer N, Cao Y, et al. Evolution of a manufacturing route to omarigliptin, a long-acting DPP-4 inhibitor for the treatment of type 2 diabetes. Org Process Res Dev 2015;19:1760–8. https://doi.org/10.1021/acs.oprd.5b00267

Article  CAS  Google Scholar 

Barnett A. DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pr. 2006;60:1454–70. https://doi.org/10.1111/j.1742-1241.2006.01178.x

Article  CAS  Google Scholar 

Peng F, Chen Y, Chen CY, Dormer PG, Kassim A, McLaughlin M, et al. Asymmetric formal synthesis of the long-acting DPP-4 inhibitor omarigliptin. J Org Chem. 2017;82:9023–9. https://doi.org/10.1021/acs.joc.7b01467

Article  CAS  PubMed  PubMed Central  Google Scholar 

Savage SA, Jones GS, Kolotuchin S, Ramrattan SA, Vu T, Waltermire RE, et al. Preparation of saxagliptin, a novel DPP-IV inhibitor. Org Process Res Dev 2009;13:1169–76. https://doi.org/10.1021/op900226j

Article  CAS  Google Scholar 

Li N, Wang LJ, Jiang B, Guo SJ, Li XQ, Chen XC, et al. Design, synthesis and biological evaluation of novel pyrimidinedione derivatives as DPP-4 inhibitors. Bioorg Med Chem Lett. 2018;28:2131–5. https://doi.org/10.1016/j.bmcl.2018.05.022

Article  CAS  PubMed  Google Scholar 

Liao Q, Jiang L, Li C, Shen Y, Wang M, Cao C, et al. An Efficient and practical method for the synthesis of saxagliptin intermediate 2-(3-Hydroxy-1-adamantane)-2-oxoacetic acid and its optimization. J Chem. 2019. https://doi.org/10.1155/2019/5375670

Ceriello A, Sportiello L, Rafaniello C, Rossi F. DPP-4 inhibitors: pharmacological differences and their clinical implications. Expert Opin Drug Saf. 2014;13:57–68. https://doi.org/10.1517/14740338.2014.944862

Article  CAS  Google Scholar 

Subbaiah CS, Haq W. Efficient stereocontrolled synthesis of sitagliptin phosphate. Tetrahedron Asymmetry. 2014;25:1026–30. https://doi.org/10.1016/j.tetasy.2014.06.001

Article  CAS  Google Scholar 

Lombardi A, Concepcion E, Hou H, Arib H, Mezei M, Osman R, et al. Retro-inverso D-peptides as a novel targeted immunotherapy for Type 1 diabetes. J Autoimmun. 2020;115:102543. https://doi.org/10.1016/j.jaut.2020.102543

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang SK, Cho GH, Leem HJ, Soh BK, Sim J, Suh YG, et al. A highly stereoselective and efficient synthesis of enantiomerically pure sitagliptin. Tetrahedron Asymmetry. 2017;28:34–40. https://doi.org/10.1016/j.tetasy.2016.10.010

Article  CAS  Google Scholar 

Deng X, Shen J, Zhu H, Xiao J, Sun R, Xie F, et al. Surrogating and redirection of pyrazolo[1,5-a]pyrimidin-7(4H)-one core, a novel class of potent and selective DPP-4 inhibitors. Bioorg Med Chem 2018;26:903–12. https://doi.org/10.1016/j.bmc.2018.01.006

Article  CAS  PubMed  Google Scholar 

Xie Y, Shao L, Wang Q, Bai Y, Chen Z, Li N, et al. Synthesis, nitric oxide release, and dipeptidyl peptidase-4 inhibition of sitagliptin derivatives as new multifunctional antidiabetic agents. Bioorg Med Chem Lett. 2018;28:3731–5. https://doi.org/10.1016/j.bmcl.2018.10.019

Article  CAS  PubMed  Google Scholar 

Bae HY, Kim MJ, Sim JH, Song CE. Direct catalytic asymmetric mannich reaction with dithiomalonates as excellent mannich donors: organocatalytic Synthesis of (R)-Sitagliptin. Angew Chem Int Ed Engl. 2016;55:10825–9. https://doi.org/10.1002/anie.201605167.

Article  CAS  PubMed  Google Scholar 

Kim GH, Jeon H, Khobragade TP, Patil MD, Sung S, Yoon S, et al. Enzymatic synthesis of sitagliptin intermediate using a novel ω-transaminase. Enzym Microb Technol 2019;120:52–60. https://doi.org/10.1016/j.enzmictec.2018.10.003

Article  CAS  Google Scholar 

Kumar N, Devineni SR, Aggile K, Gajjala PR, Kumar P, Dubey SK, et al. Facile new industrial process for synthesis of teneligliptin through new intermediates and its optimization with control of impurities. Res Chem Intermed 2018;44:567–84. https://doi.org/10.1007/s11164-017-3120-3

Article  CAS  Google Scholar 

Xie H, Zeng S, He Y, Zhang G, Yu P, Zhong G, et al. Rapid generation of a novel DPP-4 inhibitor with long-acting properties: SAR study and PK/PD evaluation. Eur J Med Chem. 2017;141:519–29. https://doi.org/10.1016/j.ejmech.2017.10.029

Article  CAS  PubMed  Google Scholar 

Hrdina R, Metz FM, Larrosa M, Berndt JP, Zhygadlo YY, Becker S, et al. Intramolecular C-H amination reaction provides direct access to 1,2-disubstituted diamondoids. Eur J Org Chem 2015;2015:6231–6. https://doi.org/10.1002/ejoc.201500691

Article  CAS  Google Scholar 

Castaldi M, Baratella M, Menegotto IG, Castaldi G, Giovenzana GB. A concise and efficient synthesis of vildagliptin. Tetrahedron Lett. 2017;58:3426–8. https://doi.org/10.1016/j.tetlet.2017.07.062

Article  CAS  Google Scholar 

Rommelmann P, Betke T, Gröger H. Synthesis of enantiomerically pure N-Acyl amino nitriles via catalytic dehydration of oximes and application in a de novo synthesis of vildagliptin. Org Process Res Dev 2017;21:1521–7. https://doi.org/10.1021/acs.oprd.7b00169

Article  CAS 

留言 (0)

沒有登入
gif