Revolutionizing drug discovery: an AI-powered transformation of molecular docking

Meng X-Y, Zhang H-X, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr computer-aided drug Des. 2011;7:146–57.

Article  CAS  Google Scholar 

Jorgensen WL. The many roles of computation in drug discovery. Science. 2004;303:1813–8.

Article  CAS  PubMed  Google Scholar 

Bajorath J. Integration of virtual and high-throughput screening. Nat Rev Drug Discov. 2002;1:882–94.

Article  CAS  PubMed  Google Scholar 

Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3:935–49.

Article  CAS  PubMed  Google Scholar 

Gohlke H, Klebe G. Approaches to the description and prediction of the binding affinity of small‐molecule ligands to macromolecular receptors. Angew Chem Int Ed. 2002;41:2644–76.

Article  CAS  Google Scholar 

Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol. 2008;153:S7–S26.

Article  CAS  PubMed  Google Scholar 

Shoichet BK, McGovern SL, Wei B, Irwin JJ. Hits, leads and artifacts from virtual and high throughput screening. Molecular Informatics: Confronting Complexity, 2002: p. 436–S269.

Neves BJ, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov EN, Andrade CH. QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. Front Pharm. 2018;9:1275.

Article  CAS  Google Scholar 

Clark DE. Virtual Screening: Is Bigger Always Better? Or Can Small Be Beautiful? J Chem Inf Model. 2020;60:4120–3.

Article  CAS  PubMed  Google Scholar 

Gloriam DE. Bigger is better in virtual drug screens. Nature. 2019;566:193–4.

Article  CAS  PubMed  Google Scholar 

Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982;161:269–88.

Article  CAS  PubMed  Google Scholar 

Goodsell DS, Sanner MF, Olson AJ, Forli S. The AutoDock suite at 30. Protein Sci. 2021;30:31–43.

Article  CAS  PubMed  Google Scholar 

Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021;61:3891–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alogheli H, Olanders G, Schaal W, Brandt P, Karlén A. Docking of Macrocycles: Comparing Rigid and Flexible Docking in Glide. J Chem Inf Model. 2017;57:190–202.

Article  CAS  PubMed  Google Scholar 

Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Medicinal Chem. 2004;47:1739–49.

Article  CAS  Google Scholar 

David L, Mdahoma A, Singh N, Buchoux S, Pihan E, Diaz C, et al. A toolkit for covalent docking with GOLD: from automated ligand preparation with KNIME to bound protein-ligand complexes. Bioinform Adv. 2022;2:vbac090.

Article  PubMed  PubMed Central  Google Scholar 

Ambrosetti F, Jandova Z, Bonvin A. Information-Driven Antibody-Antigen Modelling with HADDOCK. Methods Mol Biol. 2023;2552:267–82.

Article  PubMed  Google Scholar 

Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro web server for protein–protein docking. Nat Protoc. 2017;12:255–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alekseenko A, Kotelnikov S, Ignatov M, Egbert M, Kholodov Y, Vajda S, et al. ClusPro LigTBM: Automated Template-based Small Molecule Docking. J Mol Biol. 2020;432:3404–10.

Article  CAS  PubMed  Google Scholar 

Crampon K, Giorkallos A, Deldossi M, Baud S, Steffenel LA. Machine-learning methods for ligand-protein molecular docking. Drug Discov Today. 2022;27:151–64.

Article  CAS  PubMed  Google Scholar 

Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. Prog Med Chem. 2021;60:273–343.

Article  PubMed  Google Scholar 

Li X, Li Y, Cheng T, Liu Z, Wang R. Evaluation of the performance of four molecular docking programs on a diverse set of protein‐ligand complexes. J Comput Chem. 2010;31:2109–25.

Article  PubMed  Google Scholar 

Plewczynski D, Łaźniewski M, Augustyniak R, Ginalski K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem. 2011;32:742–55.

Article  CAS  PubMed  Google Scholar 

Receptor.AI, ArtiDock from Receptor.AI: Next-generation AI Docking That Beats DiffDock and AlphaFold-latest.

Corso G, Stärk H, Jing B, Barzilay R, Jaakkola T. Diffdock: Diffusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:2210.01776, 2022.

Abramso J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500.

Article  Google Scholar 

Durojaye OA, Yekeen AA, Idris MO, Okoro NO, Odiba AS, Nwanguma BC. Investigation of the MDM2-binding potential of de novo designed peptides using enhanced sampling simulations. Int J Biol Macromol. 2024;269:131840.

Article  CAS  PubMed  Google Scholar 

Durojaye OA, Okoro NO, Odiba AS, Nwanguma BC. MasitinibL shows promise as a drug-like analog of masitinib that elicits comparable SARS-Cov-2 3CLpro inhibition with low kinase preference. Sci Rep. 2023;13:6972.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Idris MO, Yekeen AA, Alakanse OS, Durojaye OA. Computer-aided screening for potential TMPRSS2 inhibitors: a combination of pharmacophore modeling, molecular docking and molecular dynamics simulation approaches. J Biomol Struct Dyn. 2021;39:5638–56.

Article  CAS  PubMed  Google Scholar 

Sedzro DM, Idris MO, Durojaye OA, Yekeen AA, Fadahunsi AA, Alakanse SO. Identifying Potential p53‐MDM2 Interaction Antagonists: An Integrated Approach of Pharmacophore‐Based Virtual Screening, Interaction Fingerprinting, MD Simulation and DFT Studies. Chem Select. 2022;7:e202202380.

CAS  Google Scholar 

Difa CA, Eze CK, Iyaji RF, Cosmas S, Durojaye A. In-Silico pharmacokinetics study on the inhibitory potentials of the C= O derivative of gedunin and pyrimethamine against the Plasmodium falciparum dihydrofolate reductase. Ciência. 2018;4:137–42.

Google Scholar 

Krishna R, Wang, J Ahern W, Sturmfels P, Venkatesh P, Kalvet I, et al. Generalized Biomolecular Modeling and Design with RoseTTAFold All-Atom. bioRxiv, 2023: p. 2023.10. 09.561603.

Krishna R, Wang J, Ahern W, Sturmfels P, Venkatesh P, Kalvet I, et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science. 2024;384:eadl2528.

Article  CAS  PubMed  Google Scholar 

Bryant P, Kelkar A, Guljas A, Clementi C, Noé F. Structure prediction of protein-ligand complexes from sequence information with Umol. bioRxiv, 2023: p. 2023.11. 03.565471.

Team, G.D.A.T.a. I.L., Performance and structural coverage of the latest, in-development AlphaFold model. 2023.

Uzoeto HO, Cosmas S, Bakare TT, Durojaye OA. AlphaFold-latest: revolutionizing protein structure prediction for comprehensive biomolecular insights and therapeutic advancements. Beni-Suef Univ J Basic Appl Sci. 2024;13:46.

Article  Google Scholar 

Cosmas S, Durojaye OA, Joshua PE, Ogidigo JO, Difa CA, Nwachukwu JN. Comparative in-silico parmacokinetics and molecular docking study on gedunin isolated from Azadirachta indica, its modified derivatives and selected antifolate drugs as potential dihydrofolate reductase inhibitors of Plasmodium falciparum. Int J Comput Biol Drug Des. 2020;13:237–54.

Article  Google Scholar 

Durojaye OA, Mushiana T, Uzoeto HO, Cosmas S, Udowo VM, Osotuyi AG, et al. Potential therapeutic target identification in the novel 2019 coronavirus: insight from homology modeling and blind docking study. Egypt J Med Hum Genet. 2020;21:1–17.

Article  Google Scholar 

留言 (0)

沒有登入
gif