Next-generation sequencing profiling of miRNAs in individuals with 22q11.2 deletion syndrome revealed altered expression of miR-185-5p

McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JAS, et al. 22q11.2 deletion syndrome. Nat Rev Dis Primers. 2015;1(1):15071.

Article  PubMed  PubMed Central  Google Scholar 

Grati FR, Molina Gomes D, Ferreira JCPB, Dupont C, Alesi V, Gouas L, et al. Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies. Prenat Diagn. 2015;35(8):801–9.

Article  PubMed  Google Scholar 

Shaikh TH, Kurahashi H, Saitta SC, O’Hare AM, Hu P, Roe BA, et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet. 2000;9(4):489–501.

Article  CAS  PubMed  Google Scholar 

Edelmann L, Pandita RK, Morrow BE. Low-Copy repeats mediate the common 3-Mb deletion in patients with Velo-cardio-facial syndrome. Am J Hum Genet. 1999;64(4):1076–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karbarz M. Consequences of 22q11.2 Microdeletion on the genome, Individual and Population levels. Genes (Basel). 2020;11(9):977.

Article  CAS  PubMed  Google Scholar 

Robin NH, Shprintzen RJ. Defining the clinical spectrum of deletion 22q11.2. J Pediatr. 2005;147(1):90–6.

Article  PubMed  Google Scholar 

Du Q, de la Morena MT, van Oers NSC. The Genetics and epigenetics of 22q11.2 deletion syndrome. Front Genet. 2020;10.

Racedo SE, Liu Y, Shi L, Zheng D, Morrow BE. Dgcr8 functions in the secondary heart field for outflow tract and right ventricle development in mammals. Dev Biol. 2023.

Leitão AL, Enguita FJ. A structural view of miRNA Biogenesis and function. Noncoding RNA. 2022;8(1):10.

PubMed  PubMed Central  Google Scholar 

Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–62.

Article  CAS  PubMed  Google Scholar 

Bartel DP, MicroRNAs. Cell. 2004;116(2):281–97.

Article  CAS  PubMed  Google Scholar 

Brzustowicz LM, Bassett AS. miRNA-mediated risk for schizophrenia in 22q11.2 deletion syndrome. Front Genet. 2012;3(DEC).

Sellier C, Hwang VJ, Dandekar R, Durbin-Johnson B, Charlet-Berguerand N, Ander BP, et al. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome. PLoS ONE. 2014;9(8):e103884.

Article  PubMed  PubMed Central  Google Scholar 

de la Morena MT, Eitson JL, Dozmorov IM, Belkaya S, Hoover AR, Anguiano E, et al. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome. Clin Immunol. 2013;147(1):11–22.

Article  PubMed  PubMed Central  Google Scholar 

Koshiol J, Wang E, Zhao Y, Marincola F, Landi MT. Strengths and limitations of Laboratory procedures for MicroRNA Detection. Cancer Epidemiol Biomarkers Prev. 2010;19(4):907–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ibberson D, Benes V, Muckenthaler MU, Castoldi M. RNA degradation compromises the reliability of microRNA expression profiling. BMC Biotechnol. 2009;9(1):102.

Article  PubMed  PubMed Central  Google Scholar 

Patil AH, Halushka MK. miRge3.0: a comprehensive microRNA and tRF sequencing analysis pipeline. NAR Genom Bioinform. 2021;3(3).

Love MI, Huber W, Anders S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

Article  PubMed  PubMed Central  Google Scholar 

Potla P, Ali SA, Kapoor M. A bioinformatics approach to microRNA-sequencing analysis. Osteoarthr Cartil Open. 2021;3(1):100131.

Article  PubMed  Google Scholar 

Kavakiotis I, Alexiou A, Tastsoglou S, Vlachos IS, Hatzigeorgiou AG. DIANA-miTED: a microRNA tissue expression database. Nucleic Acids Res. 2022;50(D1):D1055–61.

Article  CAS  PubMed  Google Scholar 

Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13(10):e0206239.

Article  PubMed  PubMed Central  Google Scholar 

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14(1):128.

Article  PubMed  PubMed Central  Google Scholar 

Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL et al. Gene Set Knowledge Discovery with Enrichr. Curr Protoc. 2021;1(3).

Dantas AG, Santoro ML, Nunes N, de Mello CB, Pimenta LSE, Meloni VA, et al. Downregulation of genes outside the deleted region in individuals with 22q11.2 deletion syndrome. Hum Genet. 2019;138(1):93–103.

Article  CAS  PubMed  Google Scholar 

Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R, et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet. 2008;40(6):751–60.

Article  CAS  PubMed  Google Scholar 

Earls LR, Fricke RG, Yu J, Berry RB, Baldwin LT, Zakharenko SS. Age-dependent MicroRNA control of synaptic plasticity in 22q11 deletion syndrome and Schizophrenia. J Neurosci. 2012;32(41):14132–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chun S, Du F, Westmoreland JJ, Han SB, Wang YD, Eddins D, et al. Thalamic mir-338-3p mediates auditory thalamocortical disruption and its late onset in models of 22q11.2 microdeletion. Nat Med. 2017;23(1):39–48.

Article  CAS  PubMed  Google Scholar 

Zhao D, Lin M, Chen J, Pedrosa E, Hrabovsky A, Fourcade HM, et al. MicroRNA profiling of neurons generated using Induced pluripotent stem cells derived from patients with Schizophrenia and Schizoaffective Disorder, and 22q11.2 Del. PLoS ONE. 2015;10(7):e0132387.

Article  PubMed  PubMed Central  Google Scholar 

Toyoshima M, Akamatsu W, Okada Y, Ohnishi T, Balan S, Hisano Y, et al. Analysis of induced pluripotent stem cells carrying 22q11.2 deletion. Transl Psychiatry. 2016;6(11):e934–934.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ying S, Heung T, Zhang Z, Yuen RKC, Bassett AS. Schizophrenia Risk mediated by microRNA target genes overlapped by genome-wide Rare Copy Number Variation in 22q11.2 deletion syndrome. Front Genet. 2022;13.

Kim JO, Song DW, Kwon EJ, Hong SE, Song HK, Min CK, et al. miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways. PLoS ONE. 2015;10(3):e0122509.

Article  PubMed  PubMed Central  Google Scholar 

Poirsier C, Besseau-Ayasse J, Schluth-Bolard C, Toutain J, Missirian C, Le Caignec C, et al. A French multicenter study of over 700 patients with 22q11 deletions diagnosed using FISH or aCGH. Eur J Hum Genet. 2016;24(6):844–51.

Article  CAS  PubMed  Google Scholar 

Cancrini C, Puliafito P, Digilio MC, Soresina A, Martino S, Rondelli R, et al. Clinical features and Follow-Up in patients with 22q11.2 deletion syndrome. J Pediatr. 2014;164(6):1475–e14802.

Article  CAS  PubMed  Google Scholar 

Campbell IM, Sheppard SE, Crowley TB, McGinn DE, Bailey A, McGinn MJ, et al. What is new with 22q? An update from the 22q and you center at the children’s hospital of Philadelphia. Am J Med Genet A. 2018;176(10):2058–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sabaie H, Gharesouran J, Asadi MR, Farhang S, Ahangar NK, Brand S, et al. Downre

留言 (0)

沒有登入
gif