Mendelian randomization evidence based on European ancestry for the causal effects of leukocyte telomere length on prostate cancer

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

PubMed  Google Scholar 

Szostak JW, Blackburn EH. Cloning yeast telomeres on linear plasmid vectors. Cell. 1982;29:245–55.

CAS  PubMed  Google Scholar 

Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350:1193–8.

CAS  PubMed  Google Scholar 

Graham MK, Meeker A. Telomeres and telomerase in prostate cancer development and therapy. Nat Rev Urol. 2017;14:607–19.

CAS  PubMed  PubMed Central  Google Scholar 

DeMarzo AM, Nelson WG, Isaacs WB, et al. Pathological and molecular aspects of prostate cancer. Lancet. 2003;361:955–64.

CAS  PubMed  Google Scholar 

Heaphy CM, Gaonkar G, Peskoe SB, et al. Prostate stromal cell telomere shortening is associated with risk of prostate cancer in the placebo arm of the Prostate Cancer Prevention Trial. Prostate. 2015;75:1160–6.

PubMed  PubMed Central  Google Scholar 

Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev. 2022;73: 101507.

CAS  PubMed  Google Scholar 

Julin B, Shui I, Heaphy CM, et al. Circulating leukocyte telomere length and risk of overall and aggressive prostate cancer. Br J Cancer. 2015;112:769–76.

CAS  PubMed  PubMed Central  Google Scholar 

Mirabello L, Huang WY, Wong JY, et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell. 2009;8:405–13.

CAS  PubMed  Google Scholar 

Weischer M, Nordestgaard BG, Cawthon RM, et al. Short telomere length, cancer survival, and cancer risk in 47102 individuals. J Natl Cancer Inst. 2013;105:459–68.

CAS  PubMed  Google Scholar 

Hu R, Hua XG, Jiang QC. Associations of telomere length in risk and recurrence of prostate cancer: a meta-analysis. Andrologia. 2019;51: e13304.

PubMed  Google Scholar 

Renner W, Krenn-Pilko S, Gruber HJ, et al. Relative telomere length and prostate cancer mortality. Prostate Cancer Prostatic Dis. 2018;21:579–83.

CAS  PubMed  Google Scholar 

Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. Geroscience. 2021;43:645–54.

CAS  PubMed  PubMed Central  Google Scholar 

D’Acquisto F, Crompton T. CD3+CD4-CD8- (double negative) T cells: saviours or villains of the immune response? Biochem Pharmacol. 2011;82:333–40.

CAS  PubMed  Google Scholar 

Brandt D, Hedrich CM. TCRαβ(+)CD3(+)CD4(-)CD8(-) (double negative) T cells in autoimmunity. Autoimmun Rev. 2018;17:422–30.

CAS  PubMed  Google Scholar 

Thanassoulis G. Mendelian randomization: how genetics is pushing the boundaries of epidemiology to identify new causes of heart disease. Can J Cardiol. 2013;29:30–6.

PubMed  Google Scholar 

Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318:1925–6.

PubMed  Google Scholar 

Carter AR, Sanderson E, Hammerton G, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol. 2021;36:465–78.

PubMed  PubMed Central  Google Scholar 

Sanderson E, Davey Smith G, Windmeijer F, et al. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int J Epidemiol. 2019;48:713–27.

PubMed  Google Scholar 

Wan B, Lu L, Lv C. Mendelian randomization study on the causal relationship between leukocyte telomere length and prostate cancer. PLoS ONE. 2023;18: e0286219.

CAS  PubMed  PubMed Central  Google Scholar 

Haycock PC, Burgess S, Nounu A, et al. Association between telomere length and risk of cancer and non-neoplastic diseases: a Mendelian randomization study. JAMA Oncol. 2017;3:636–51.

PubMed  Google Scholar 

Wilson RL, Taaffe DR, Newton RU, et al. Obesity and prostate cancer: a narrative review. Crit Rev Oncol Hematol. 2022;169: 103543.

PubMed  Google Scholar 

Castro-Espin C, Agudo A. The role of diet in prognosis among cancer survivors: a systematic review and meta-analysis of dietary patterns and diet interventions. Nutrients. 2022;14.

Wang C, Zhang Y, Gao WQ. The evolving role of immune cells in prostate cancer. Cancer Lett. 2022;525:9–21.

CAS  PubMed  Google Scholar 

Morka N, Norris JM, Emberton M, et al. Prostate cancer and the human papilloma virus: causative association, role of vaccines, and the impact of the COVID-19 pandemic. Prostate Cancer Prostatic Dis. 2022;25:55–7.

CAS  PubMed  Google Scholar 

Rebello RJ, Oing C, Knudsen KE, et al. Prostate cancer. Nat Rev Dis Prim. 2021;7:9.

PubMed  Google Scholar 

Smith GD, Ebrahim S. “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.

PubMed  Google Scholar 

Codd V, Denniff M, Swinfield C, et al. Measurement and initial characterization of leukocyte telomere length in 474,074 participants in UK Biobank. Nat Aging. 2022;2:170–9.

CAS  PubMed  Google Scholar 

Prescott J, Kraft P, Chasman DI, et al. Genome-wide association study of relative telomere length. PLoS ONE. 2011;6: e19635.

CAS  PubMed  PubMed Central  Google Scholar 

Mangino M, Hwang SJ, Spector TD, et al. Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum Mol Genet. 2012;21:5385–94.

CAS  PubMed  PubMed Central  Google Scholar 

Codd V, Nelson CP, Albrecht E et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45:422–427, 427e421–422.

Saleh SAK, Adly HM, Abdelkhaliq AA, et al. Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients. Curr Urol. 2020;14:44–9.

CAS  PubMed  PubMed Central  Google Scholar 

Bordini J, Morisi F, Elia AR, et al. Iron induces cell death and strengthens the efficacy of antiandrogen therapy in prostate cancer models. Clin Cancer Res. 2020;26:6387–98.

CAS  PubMed  Google Scholar 

Perez-Cornago A, Dunneram Y, Watts EL, et al. Adiposity and risk of prostate cancer death: a prospective analysis in UK Biobank and meta-analysis of published studies. BMC Med. 2022;20:143.

CAS  PubMed  PubMed Central  Google Scholar 

García-Cruz E, Carrión Puig A, García-Larrosa A, et al. Higher sex hormone-binding globulin and lower bioavailable testosterone are related to prostate cancer detection on prostate biopsy. Scand J Urol. 2013;47:282–9.

PubMed  Google Scholar 

Sawada N, Iwasaki M, Inoue M, et al. Plasma testosterone and sex hormone-binding globulin concentrations and the risk of prostate cancer among Japanese men: a nested case-control study. Cancer Sci. 2010;101:2652–7.

CAS  PubMed  Google Scholar 

Philp LK, Rockstroh A, Sadowski MC, et al. Leptin antagonism inhibits prostate cancer xenograft growth and progression. Endocr Relat Cancer. 2021;28:353–75.

CAS  PubMed  Google Scholar 

Chang S, Hursting SD, Contois JH, et al. Leptin and prostate cancer. Prostate. 2001;46:62–7.

CAS  PubMed  Google Scholar 

Watts EL, Perez-Cornago A, Kothari J, et al. Hematologic markers and prostate cancer risk: a prospective analysis in UK biobank. Cancer Epidemiol Biomark Prev. 2020;29:1615–26.

CAS  Google Scholar 

Møller H, Roswall N, Van Hemelrijck M, et al. Prostate cancer incidence, clinical stage and survival in relation to obesity: a prospective cohort study in Denmark. Int J Cancer. 2015;136:1940–7.

PubMed  Google Scholar 

Lee KH, Seong HJ, Kim G, et al. Consumption of fish and ω-3 fatty acids and cancer risk: an umbrella review of meta-analyses of observational studies. Adv Nutr. 2020;11:1134–49.

PubMed  PubMed Central  Google Scholar 

Nabavi SF, Bilotto S, Russo GL, et al. Omega-3 polyunsaturated fatty acids and cancer: lessons learned from clinical trials. Cancer Metastasis Rev. 2015;34:359–80.

CAS  PubMed  Google Scholar 

Chavarro JE, Kenfield SA, Stampfer MJ, et al. Blood levels of saturated and monounsaturated fatty acids as markers of de novo lipogenesis and risk of prostate cancer. Am J Epidemiol. 2013;178:1246–55.

PubMed  PubMed Central  Google Scholar 

Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380:33–44.

CAS  PubMed  Google Scholar 

Klein EA, Thompson IM Jr, Tangen CM, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2011;306:1549–56.

CAS  PubMed  PubMed Central  Google Scholar 

Moran NE, Thomas-Ahner JM, Wan L, et al. Tomatoes, lycopene, and prostate cancer: What have we learned from experimental models? J Nutr. 2022;152:1381–403.

CAS  PubMed  PubMed Central  Google Scholar 

Elkord E. Immunology and immunotherapy approaches for prostate cancer. Prostate Cancer Prostatic Dis. 2007;10:224–36.

CAS  PubMed 

留言 (0)

沒有登入
gif