Evolutionary and functional analyses of LRP5 in archaic and extant modern humans

Chirchir H, Kivell TL, Ruff CB, Hublin JJ, Carlson KJ, Zipfel B, et al. Recent origin of low trabecular bone density in modern humans. Proc Natl Acad Sci U S A. 2015;112(2):366–71.

Article  CAS  PubMed  Google Scholar 

Harvati K, Reyes-Centeno H. Evolution of homo in the middle and late pleistocene. J Hum Evol. 2022;173:103279. https://doi.org/10.1016/j.jhevol.2022.103279.

Article  PubMed  Google Scholar 

Gómez-Robles A. Dental evolutionary rates and its implications for the Neanderthal–modern human divergence. Sci Adv. 2019;5(5):eaaw1268. https://doi.org/10.1126/sciadv.aaw1268.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weaver TD. The meaning of Neandertal skeletal morphology. Proc Natl Acad Sci U S A. 2009;106(38):16028–33. https://doi.org/10.1073/pnas.0903864106.

Article  PubMed  PubMed Central  Google Scholar 

Ruff CB, Trinkaus E, Walker A, Larsen CS. Postcranial robusticity in Homo. I: Temporal trends and mechanical interpretation. Am J Phys Anthropol. 1993;91(1):21–53. https://doi.org/10.1002/ajpa.1330910103.

Article  CAS  PubMed  Google Scholar 

Kralick AE, Zemel BS. Evolutionary perspectives on the developing skeleton and implications for lifelong health. Front Endocrinol (Lausanne). 2020;11:513066. https://doi.org/10.3389/fendo.2020.00099.

Article  Google Scholar 

Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporosis Int. 2003;14(Suppl 3):13–8. https://doi.org/10.1007/s00198-002-1345-4.

Article  Google Scholar 

Ruff CB, Holt B, Niskanen M, Sladek V, Berner M, Garofalo E, et al. Gradual decline in mobility with the adoption of food production in Europe. Proc Natl Acad Sci U S A. 2015;112(23):7147–52. https://doi.org/10.1073/pnas.1502932112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryan TM, Shaw CN. Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading. Proc Natl Acad Sci U S A. 2015;112(2):372–7.

Article  CAS  PubMed  Google Scholar 

Chirchir H. Trabecular bone fraction variation in modern humans, fossil hominins and other primates. Anatom Rec (Hoboken). 2019;302(2):288–305.

Article  Google Scholar 

Polidoulis I, Beyene J, Cheung AM. The effect of exercise on pQCT parameters of bone structure and strength in postmenopausal women–a systematic review and meta-analysis of randomized controlled trials. Osteoporosis Int. 2012;23(1):39–51.

Article  CAS  Google Scholar 

Warden SJ, Mantila Roosa SM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A. 2014;111(14):5337–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Macintosh AA, Wells JCK, Stock JT. Maternal investment, maturational rate of the offspring and mechanical competence of the adult female skeleton. Evol Med Public Health. 2018;2018(1):167–79. https://doi.org/10.1093/emph/eoy015.

Article  PubMed  PubMed Central  Google Scholar 

Stieglitz J, Trumble BC, Finch CE, Li D, Budoff MJ, Kaplan H, Gurven MD. Computed tomography shows high fracture prevalence among physically active forager-horticulturalists with high fertility. eLife. 2019;8:e48607.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rivadeneira F, Mäkitie O. Osteoporosis and bone mass disorders: from gene pathways to treatments. Trends Endocrinol Metab. 2016;27(5):262–81.

Article  CAS  PubMed  Google Scholar 

Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai R, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019;51(2):258–66.

Article  CAS  PubMed  Google Scholar 

Chen X, Hongling Y, Xijie Y. A review of the clinical, radiological and biochemical characteristics and genetic causes of high bone mass disorders. Curr Drug Targ. 2018;19(6):621–35. https://doi.org/10.2174/1389450119666180122161503.

Article  CAS  Google Scholar 

Gregson CL, Sayers A, Lazar V, Steel S, Dennison EM, Cooper C, et al. The high bone mass phenotype is characterised by a combined cortical and trabecular bone phenotype: Findings from a pQCT case–control study. Bone. 2013;52(1):380–8.

Article  PubMed  PubMed Central  Google Scholar 

Arsuaga JL, Carretero JM, Lorenzo C, Gómez-Olivencia A, Pablos A, Rodríguez L, et al. Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain. Proc Natl Acad Sci U S A. 2015;112(37):11524–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arsuaga JL, Martínez I, Arnold LJ, Aranburu A, Gracia-Téllez A, Sharp WD, et al. Neandertal roots: cranial and chronological evidence from Sima de los Huesos. Science. 2014;344(6190):1358–63. https://doi.org/10.1126/science.1253958.

Article  CAS  PubMed  Google Scholar 

Rodríguez L, Carretero JM, García-González R, Arsuaga JL. Cross-sectional properties of the lower limb long bones in the Middle Pleistocene Sima de los Huesos sample (Sierra de Atapuerca, Spain). J Hum Evol. 2018;117:1–12.

Article  PubMed  Google Scholar 

Carretero JM, Rodríguez L, García-González R, Quam RM, Arsuaga JL. Exploring bone volume and skeletal weight in the Middle Pleistocene humans from the Sima de los Huesos site (Sierra de Atapuerca, Spain). J Anat. 2018;233(6):740–54. https://doi.org/10.1111/joa.12886.

Article  PubMed  PubMed Central  Google Scholar 

Littman J, Yang W, Olansen J, Phornphutkul C, Aaron RK. LRP5, bone mass polymorphisms and skeletal disorders. Genes (Basel). 2023;14(10):1846.

Article  CAS  PubMed  Google Scholar 

van Meurs JBJ, Trikalinos TA, Ralston SH, Balcells S, Brandi ML, Brixen K, et al. Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA. 2008;299(11):1277–90.

Article  PubMed  PubMed Central  Google Scholar 

Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9.

Article  CAS  PubMed  Google Scholar 

Gregson CL, Duncan EL. The genetic architecture of high bone mass. Front Endocrinol (Lausanne). 2020;11:595653.

Article  PubMed  Google Scholar 

Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt pathway extracellular components and their essential roles in bone homeostasis. Genes (Basel). 2022;13(1):138.

Article  PubMed  Google Scholar 

Ahlquist KD, Bañuelos MM, Funk A, Lai J, Rong S, Villanea FA, et al. Our tangled family tree: new genomic methods offer insight into the legacy of archaic admixture. Genome Biol Evol. 2021. https://doi.org/10.1093/gbe/evab115.

Article  PubMed  PubMed Central  Google Scholar 

Medina-Gómez C, Chesi A, Heppe DHM, Zemel BS, Yin JL, Kalkwarf HJ, et al. BMD loci contribute to ethnic and developmental differences in skeletal fragility across populations: assessment of evolutionary selection pressures. Mol Biol Evol. 2015;32(11):2961–72.

Article  PubMed  PubMed Central  Google Scholar 

Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.

Article  PubMed  Google Scholar 

Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014;505(7481):43–9.

Article  PubMed  Google Scholar 

Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338(6104):222–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prüfer K, de Filippo C, Grote S, Mafessoni F, Korlević P, Hajdinjak M, et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science. 2017;358(6363):655–8.

Article  PubMed  PubMed Central  Google Scholar 

Mafessoni F, Grote S, de Filippo C, Slon V, Kolobova KA, Viola B, et al. A high-coverage Neandertal genome from Chagyrskaya cave. Proc Natl Acad Sci U S A. 2020;117(26):15132–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):1–4.

Article  CAS  Google Scholar 

Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20(1):110–21.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif