An RNA-seq study in Friedreich ataxia patients identified hsa-miR-148a-3p as a putative prognostic biomarker of the disease

Campuzano V, Montermini L, Lutz Y, Cova L, Hindelang C, Jiralerspong S, Trottier Y, Kish SJ, Faucheux B, Trouillas P, et al. Frataxin is reduced in Friedreich Ataxia patients and is Associated with mitochondrial membranes. Hum Mol Genet. 1997;6:1771–80. https://doi.org/10.1093/hmg/6.11.1771.

Article  CAS  PubMed  Google Scholar 

Clark E, Johnson J, Dong YN, Mercado-Ayon E, Warren N, Zhai M, McMillan E, Salovin A, Lin H, Lynch DR. Role of Frataxin Protein Deficiency and metabolic dysfunction in Friedreich Ataxia, an autosomal recessive mitochondrial disease. Neuronal Signal. 2018;2:NS20180060. https://doi.org/10.1042/NS20180060.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koeppen AH. Friedreich’s Ataxia: Pathology, Pathogenesis, and Molecular Genetics. J Neurol Sci. 2011;303:1–12. https://doi.org/10.1016/j.jns.2011.01.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Condò I, Ventura N, Malisan F, Tomassini B, Testi R. A Pool of Extramitochondrial Frataxin that promotes cell survival. J Biol Chem. 2006;281:16750–6. https://doi.org/10.1074/jbc.M511960200.

Article  CAS  PubMed  Google Scholar 

Guccini I, Serio D, Condò I, Rufini A, Tomassini B, Mangiola A, Maira G, Anile C, Fina D, Pallone F, et al. Frataxin participates to the Hypoxia-Induced response in tumors. Cell Death Dis. 2011;2:e123. https://doi.org/10.1038/cddis.2011.5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schiavi A, Torgovnick A, Kell A, Megalou E, Castelein N, Guccini I, Marzocchella L, Gelino S, Hansen M, Malisan F, et al. Autophagy induction extends Lifespan and reduces lipid content in response to Frataxin Silencing in C. Elegans. Exp Gerontol. 2013;48:191–201. https://doi.org/10.1016/j.exger.2012.12.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santos R, Lefevre S, Sliwa D, Seguin A, Camadro J-M, Lesuisse E. Friedreich Ataxia: Molecular mechanisms, Redox Considerations, and Therapeutic opportunities. Antioxid Redox Signal. 2010;13:651–90. https://doi.org/10.1089/ars.2009.3015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou J-GG, Jankovic J. Movement disorders in Friedreich’s Ataxia. J Neurol Sci. 2003;206:59–64. https://doi.org/10.1016/s0022-510x(02)00321-0.

Article  PubMed  Google Scholar 

Payne RM, Wagner GR. Cardiomyopathy in Friedreich Ataxia: clinical findings and research. J Child Neurol. 2012;27:1179–86. https://doi.org/10.1177/0883073812448535.

Article  PubMed  PubMed Central  Google Scholar 

Cnop M, Mulder H, Igoillo-Esteve M. Diabetes in Friedreich Ataxia. J Neurochem. 2013;126(Suppl 1):94–102. https://doi.org/10.1111/jnc.12216.

Article  CAS  PubMed  Google Scholar 

Reetz K, Dogan I, Costa AS, Dafotakis M, Fedosov K, Giunti P, Parkinson MH, Sweeney MG, Mariotti C, Panzeri M, et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational studies (EFACTS) Cohort: a cross-sectional analysis of Baseline Data. Lancet Neurol. 2015;14:174–82. https://doi.org/10.1016/s1474-4422(14)70321-7.

Article  PubMed  Google Scholar 

Cook A, Giunti P. Friedreich’s Ataxia: clinical features, Pathogenesis and management. Br Med Bull. 2017;124:19–30. https://doi.org/10.1093/bmb/ldx034.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P. Clinical features of Friedreich’s Ataxia: classical and atypical phenotypes. J Neurochem. 2013;126:103–17. https://doi.org/10.1111/jnc.12317.

Article  CAS  PubMed  Google Scholar 

Lynch DR, Chin MP, Delatycki MB, Subramony SH, Corti M, Hoyle JC, Boesch S, Nachbauer W, Mariotti C, Mathews KD, et al. Safety and Efficacy of Omaveloxolone in Friedreich Ataxia (MOXIe study). Ann Neurol. 2021;89:212–25. https://doi.org/10.1002/ana.25934.

Article  CAS  PubMed  Google Scholar 

Lee A, Omaveloxolone. First Approval Drugs. 2023;83:725–9. https://doi.org/10.1007/s40265-023-01874-9.

Article  CAS  PubMed  Google Scholar 

Benini M, Fortuni S, Condò I, Alfedi G, Malisan F, Toschi N, Serio D, Massaro DS, Arcuri G, Testi R, et al. E3 ligase RNF126 directly ubiquitinates Frataxin, promoting its degradation: identification of a potential therapeutic target for Friedreich Ataxia. Cell Rep. 2017;18:2007–17. https://doi.org/10.1016/j.celrep.2017.01.079.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alfedi G, Luffarelli R, Condò I, Pedini G, Mannucci L, Massaro DS, Benini M, Toschi N, Alaimo G, Panarello L, et al. Drug repositioning screening identifies Etravirine as a potential therapeutic for Friedreich’s Ataxia. Mov Disord. 2019;34:323–34. https://doi.org/10.1002/mds.27604.

Article  CAS  PubMed  Google Scholar 

Sivakumar A, Cherqui S. Advantages and limitations of Gene Therapy and Gene Editing for Friedreich’s Ataxia. Front Genome Ed. 2022;4:903139. https://doi.org/10.3389/fgeed.2022.903139.

Article  PubMed  PubMed Central  Google Scholar 

Keita M, McIntyre K, Rodden LN, Schadt K, Lynch DR. Friedreich Ataxia: clinical features and New Developments. Neurodegener Dis Manag. 2022;12:267–83. https://doi.org/10.2217/nmt-2022-0011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rufini A, Malisan F, Condò I, Testi R. Drug repositioning in Friedreich Ataxia. Front Neurosci. 2022;16. https://doi.org/10.3389/fnins.2022.814445.

Subramony SH. Degenerative ataxias: challenges in Clinical Research. Ann Clin Transl Neurol. 2016;4:53–60. https://doi.org/10.1002/acn3.374.

Article  PubMed  PubMed Central  Google Scholar 

Rizzacasa B, Amati F, Romeo F, Novelli G, Mehta JL. Epigenetic modification in coronary atherosclerosis: JACC Review topic of the Week. J Am Coll Cardiol. 2019;74:1352–65. https://doi.org/10.1016/j.jacc.2019.07.043.

Article  CAS  PubMed  Google Scholar 

Ma J. The development of epigenetics in the study of Disease Pathogenesis. Adv Exp Med Biol. 2020;1253. https://doi.org/10.1007/978-981-15-3449-2_2.

Rizzacasa B, Morini E, Mango R, Vancheri C, Budassi S, Massaro G, Maletta S, Macrini M, D’Annibale S, Romeo F, et al. MiR-423 is differentially expressed in patients with stable and unstable coronary artery disease: a pilot study. PLoS ONE. 2019;14:e0216363. https://doi.org/10.1371/journal.pone.0216363.

Article  PubMed  PubMed Central  Google Scholar 

Vancheri C, Morini E, Prandi FR, Barillà F, Romeo F, Novelli G, Amati F. Downregulation of circulating hsa-miR-200c-3p correlates with Dyslipidemia in patients with stable coronary artery disease. Int J Mol Sci. 2023;24:1112. https://doi.org/10.3390/ijms24021112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Latini A, Vancheri C, Amati F, Morini E, Grelli S, Matteucci C, Petrone V, Colona VL, Murdocca M, Andreoni M, et al. Expression analysis of miRNA Hsa-Let7b-5p in Naso-Oropharyngeal swabs of COVID-19 patients supports its role in regulating ACE2 and DPP4 receptors. J Cell Mol Med. 2022;26:4940–8. https://doi.org/10.1111/jcmm.17492.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ha T-Y. MicroRNAs in Human diseases: from Cancer to Cardiovascular Disease. Immune Netw. 2011;11:135–54. https://doi.org/10.4110/in.2011.11.3.135.

Article  PubMed  PubMed Central  Google Scholar 

Viswambharan V, Thanseem I, Vasu MM, Poovathinal SA, Anitha A. miRNAs as biomarkers of neurodegenerative disorders. Biomark Med. 2017;11:151–67. https://doi.org/10.2217/bmm-2016-0242.

Article  CAS  PubMed  Google Scholar 

Schließer P, Struebing FL, Northoff BH, Kurz A, Rémi J, Holdt L, Höglinger GU, Herms J, Koeglsperger T. Detection of a Parkinson’s Disease-Specific MicroRNA signature in nasal and oral swabs. Mov Disord. 2023. https://doi.org/10.1002/mds.29515.

Article  PubMed  Google Scholar 

Gomes BC, Peixinho N, Pisco R, Gromicho M, Pronto-Laborinho AC, Rueff J, de Carvalho M, Rodrigues AS. Differential expression of miRNAs in amyotrophic lateral sclerosis patients. Mol Neurobiol. 2023. https://doi.org/10.1007/s12035-023-03520-7.

Article  PubMed  PubMed Central  Google Scholar 

Li S, Lei Z, Sun T. The role of microRNAs in neurodegenerative diseases: a review. Cell Biol Toxicol. 2023;39:53–83. https://doi.org/10.1007/s10565-022-09761-x.

Article  CAS  PubMed  Google Scholar 

Bandiera S, Cartault F, Jannot A-S, Hatem E, Girard M, Rifai L, Loiseau C, Munnich A, Lyonnet S, Henrion-Caude A. Genetic variations creating microRNA Target sites in the FXN 3’-UTR affect Frataxin expression in Friedreich Ataxia. PLoS ONE. 2013;8:e54791. https://doi.org/10.1371/journal.pone.0054791.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahishi LH, Hart RP, Lynch DR, Ratan RR. Mir-886-3p levels are elevated in Friedreich Ataxia. J Neurosci. 2012;32:9369–73. https://doi.org/10.1523/JNEUROSCI.0059-12.2012.

Article  CAS 

留言 (0)

沒有登入
gif