Naturally occurring and artificially designed antimicrobial peptides: a comparative study of Mastoparan C and BP52

Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: Application informed by evolution. Science. 2020;368:eaau5480. https://doi.org/10.1126/science.aau5480.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luong HX, Ngan HD, Thi Phuong HB, Quoc TN, Tung TT. Multiple roles of ribosomal antimicrobial peptides in tackling global antimicrobial resistance. R Soc Open Sci. 2022;9:211583. https://doi.org/10.1098/rsos.211583.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020;19:311–32. https://doi.org/10.1038/s41573-019-0058-8.

Article  CAS  PubMed  Google Scholar 

Luong HX, Thanh TT, Tran TH. Antimicrobial peptides – Advances in development of therapeutic applications. Life Sci. 2020;260:118407. https://doi.org/10.1016/j.lfs.2020.118407.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Tailhades J, O’Brien-Simpson NM, Separovic F, Otvos L, Hossain MA, et al. Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria. Amino Acids. 2014;46:2287–94. https://doi.org/10.1007/s00726-014-1820-1.

Article  CAS  PubMed  Google Scholar 

Li W, Separovic F, O’Brien-Simpson NM, Wade JD. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev. 2021;50:4932–73. https://doi.org/10.1039/D0CS01026J.

Article  CAS  PubMed  Google Scholar 

Shi G, Kang X, Dong F, Liu Y, Zhu N, Hu Y, et al. DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res. 2022;50:D488–D96. https://doi.org/10.1093/nar/gkab651.

Article  CAS  PubMed  Google Scholar 

Luong HX, Bui HTP, Tung TT. Application of the All-Hydrocarbon Stapling Technique in the Design of Membrane-Active Peptides. J Medicinal Chem. 2022;65:3026–45. https://doi.org/10.1021/acs.jmedchem.1c01744.

Article  CAS  Google Scholar 

Bui Thi Phuong H, Le Uyen C, Doan Ngan H, Luong Xuan H. Impact of chemical modifications on the antimicrobial and hemolytic activity of helical amphipathic peptide Lasioglossin LL-III. Amino Acids. 2023; https://doi.org/10.1007/s00726-023-03326-w.

Lai Z, Yuan X, Chen H, Zhu Y, Dong N, Shan A. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnol Adv. 2022;59:107962. https://doi.org/10.1016/j.biotechadv.2022.107962.

Article  CAS  PubMed  Google Scholar 

de Santana CJC, Pires Júnior OR, Fontes W, Palma MS, Castro MS. Mastoparans: A Group of Multifunctional α-Helical Peptides With Promising Therapeutic Properties. Front Mol Biosci. 2022;9. https://doi.org/10.3389/fmolb.2022.824989.

Chen X, Zhang L, Wu Y, Wang L, Ma C, Xi X, et al. Evaluation of the bioactivity of a mastoparan peptide from wasp venom and of its analogues designed through targeted engineering. Int J Biol Sci. 2018;14:599–607. https://doi.org/10.7150/ijbs.23419.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu N, Zhong C, Liu T, Zhu Y, Gou S, Bao H, et al. Newly designed antimicrobial peptides with potent bioactivity and enhanced cell selectivity prevent and reverse rifampin resistance in Gram-negative bacteria. Eur J Pharm Sci. 2021;158:105665. https://doi.org/10.1016/j.ejps.2020.105665.

Article  CAS  PubMed  Google Scholar 

Badosa E, Ferre R, Planas M, Feliu L, Besalú E, Cabrefiga J, et al. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides. 2007;28:2276–85. https://doi.org/10.1016/j.peptides.2007.09.010.

Article  CAS  PubMed  Google Scholar 

Wade D, Andreu D, Mitchell S, Silveira A, Boman A, Boman H, et al. Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int J Pept Protein Res. 1992;40:429–36.

Article  CAS  PubMed  Google Scholar 

Andreu D, Ubach J, Boman A, Wåhlin B, Wade D, Merrifield RB, et al. Shortened cecropin A-melittin hybrids Significant size reduction retains potent antibiotic activity. FEBS Lett. 1992;296:190–4. https://doi.org/10.1016/0014-5793(92)80377-S.

Article  CAS  PubMed  Google Scholar 

Gagnon M-C, Strandberg E, Grau-Campistany A, Wadhwani P, Reichert J, Bürck J, et al. Influence of the Length and Charge on the Activity of α-Helical Amphipathic Antimicrobial Peptides. Biochemistry. 2017;56:1680–95. https://doi.org/10.1021/acs.biochem.6b01071.

Article  CAS  PubMed  Google Scholar 

Killian JA, Salemink I, de Planque MRR, Lindblom G, Koeppe RE, Greathouse DV. Induction of Nonbilayer Structures in Diacylphosphatidylcholine Model Membranes by Transmembrane α-Helical Peptides: Importance of Hydrophobic Mismatch and Proposed Role of Tryptophans. Biochemistry. 1996;35:1037–45. https://doi.org/10.1021/bi9519258.

Article  CAS  PubMed  Google Scholar 

Persson S, Killian JA, Lindblom G. Molecular ordering of interfacially localized tryptophan analogs in ester-and ether-lipid bilayers studied by 2H-NMR. Biophys J. 1998;75:1365–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yau W-M, Wimley WC, Gawrisch K, White SH. The Preference of Tryptophan for Membrane Interfaces. Biochemistry. 1998;37:14713–8. https://doi.org/10.1021/bi980809c.

Article  CAS  PubMed  Google Scholar 

Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim Biophys Acta Biomembranes. 2006;1758:1184–202. https://doi.org/10.1016/j.bbamem.2006.04.006.

Article  CAS  Google Scholar 

Won H-S, Park S-H, Kim HE, Hyun B, Kim M, Lee BJ, et al. Effects of a tryptophanyl substitution on the structure and antimicrobial activity of C-terminally truncated gaegurin 4. Eur J Biochem. 2002;269:4367–74. https://doi.org/10.1046/j.1432-1033.2002.03139.x.

Article  CAS  PubMed  Google Scholar 

Dinh TTT, Kim D-H, Luong HX, Lee B-J, Kim Y-W. Antimicrobial activity of doubly-stapled alanine/lysine-based peptides. Bioorg Med Chem Lett. 2015;25:4016–9. https://doi.org/10.1016/j.bmcl.2015.06.053.

Article  CAS  PubMed  Google Scholar 

Luong HX, Kim D-H, Mai NT, Lee B-J, Kim Y-W. Mono-substitution effects on antimicrobial activity of stapled heptapeptides. Arch Pharmacal Res. 2017;40:713–9. https://doi.org/10.1007/s12272-017-0922-1.

Article  CAS  Google Scholar 

Gautier R, Douguet D, Antonny B, Drin G. HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics. 2008;24:2101–2. https://doi.org/10.1093/bioinformatics/btn392.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif