Mendelian randomization and colocalization analysis reveal novel drug targets for myasthenia gravis

Gilhus NE. Myasthenia Gravis. N Engl J Med. 2016;375(26):2570–81.

Article  CAS  PubMed  Google Scholar 

Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 2010;10:46.

Article  PubMed  PubMed Central  Google Scholar 

Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I, Kuntz N, Massey JM, Melms A, Murai H, et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology. 2016;87(4):419–25.

Article  PubMed  PubMed Central  Google Scholar 

Iorio R, Damato V, Alboini PE, Evoli A. Efficacy and safety of rituximab for myasthenia gravis: a systematic review and meta-analysis. J Neurol. 2015;262(5):1115–9.

Article  CAS  PubMed  Google Scholar 

Wouters OJ, McKee M, Luyten J. Estimated Research and Development Investment Needed to bring a New Medicine to Market, 2009–2018. JAMA. 2020;323(9):844–53.

Article  PubMed  PubMed Central  Google Scholar 

Smith GD, Ebrahim S. Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.

Article  PubMed  Google Scholar 

Gaziano L, Giambartolomei C, Pereira AC, Gaulton A, Posner DC, Swanson SA, Ho YL, Iyengar SK, Kosik NM, Vujkovic M, et al. Actionable druggable genome-wide mendelian randomization identifies repurposing opportunities for COVID-19. Nat Med. 2021;27(4):668–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Storm CS, Kia DA, Almramhi MM, Bandres-Ciga S, Finan C, Hingorani AD, Wood NW. Finding genetically-supported drug targets for Parkinson’s disease using mendelian randomization of the druggable genome. Nat Commun. 2021;12(1):7342.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Xu X, Wang L, Li K, Sun Y, Xiao L, Dai J, Huang M, Wang Y, Wang DW. Genetic insights into therapeutic targets for aortic aneurysms: a mendelian randomization study. EBioMedicine. 2022;83:104199.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge YJ, Ou YN, Deng YT, Wu BS, Yang L, Zhang YR, Chen SD, Huang YY, Dong Q, Tan L et al. Prioritization of drug targets for neurodegenerative diseases by integrating genetic and proteomic data from brain and blood. Biol Psychiatry 2022.

Lin J, Zhou J, Xu Y. Potential drug targets for multiple sclerosis identified through mendelian randomization analysis. Brain 2023.

Chen Y, Liu S, Gong W, Guo P, Xue F, Zhou X, Wang S, Yuan Z. Protein-centric omics integration analysis identifies candidate plasma proteins for multiple autoimmune diseases. Hum Genet 2023.

Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J, Galver L, Kelley R, Karlsson A, Santos R et al. The druggable genome and support for target identification and validation in drug development. Sci Transl Med 2017, 9(383).

Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, Kirsten H, Saha A, Kreuzhuber R, Yazar S, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet. 2021;53(9):1300–10.

Article  PubMed  PubMed Central  Google Scholar 

Chia R, Saez-Atienzar S, Murphy N, Chiò A, Blauwendraat C, Roda RH, Tienari PJ, Kaminski HJ, Ricciardi R, Guida M et al. Identification of genetic risk loci and prioritization of genes and pathways for myasthenia gravis: a genome-wide association study. Proc Natl Acad Sci U S A 2022, 119(5).

Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Holmes MV, Minelli C, Relton CL, et al. Guidelines for performing mendelian randomization investigations. Wellcome Open Res. 2019;4:186.

Article  PubMed  Google Scholar 

Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suitability of summary data for two-sample mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol. 2016;45(6):1961–74.

PubMed  PubMed Central  Google Scholar 

Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, Plagnol V. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):e1004383.

Article  PubMed  PubMed Central  Google Scholar 

Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26(18):2336–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, Styrmisdottir EL, Gunnarsdottir K, Helgason A, Oddsson A, Halldorsson BV, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet. 2021;53(12):1712–21.

Article  CAS  PubMed  Google Scholar 

Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, Gutteridge A, Erola P, Liu Y, Luo S, et al. Phenome-wide mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat Genet. 2020;52(10):1122–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun BB, Chiou J, Traylor M, Benner C, Hsu YH, Richardson TG, Surendran P, Mahajan A, Robins C, Vasquez-Grinnell SG, et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature. 2023;622(7982):329–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 2018, 7.

Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, Bates P, Palmer T, Haberland V, Smith GD et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv 2020:2020.2008.2010.244293.

Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in mendelian randomization studies. Hum Mol Genet. 2018;27(R2):R195–208.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Xu F, Ruan X, Sun J, Zhang Y, Zhang H, Zhao J, Zheng J, Larsson SC, Wang X, et al. Therapeutic targets for inflammatory bowel disease: proteome-wide mendelian randomization and colocalization analyses. EBioMedicine. 2023;89:104494.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou S, Butler-Laporte G, Nakanishi T, Morrison DR, Afilalo J, Afilalo M, Laurent L, Pietzner M, Kerrison N, Zhao K, et al. A neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity. Nat Med. 2021;27(4):659–67.

Article  CAS  PubMed  Google Scholar 

Nakano M, Ayano M, Kushimoto K, Kawano S, Higashioka K, Inokuchi S, Mitoma H, Kimoto Y, Akahoshi M, Ono N, et al. Increased proportion of CD226(+) B cells is Associated with the Disease activity and prognosis of systemic Lupus Erythematosus. Front Immunol. 2021;12:713225.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu D, Fang J, Zhang S, Huang C, Huang C, Qin L, Li X, Chen M, Liu X, Liu Y, et al. Efficacy and safety of telitacicept in primary Sjögren’s syndrome: a randomized, double-blind, placebo-controlled, phase 2 trial. Rheumatology (Oxford). 2024;63(3):698–705.

Article  PubMed  Google Scholar 

Wu D, Li J, Xu D, Merrill JT, van Vollenhoven RF, Liu Y, Hu J, Li Y, Li F, Huang C, et al. Telitacicept in patients with active systemic lupus erythematosus: results of a phase 2b, randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2024;83(4):475–87.

Article  PubMed  Google Scholar 

Cortés-Vicente E, Álvarez-Velasco R, Pla-Junca F, Rojas-Garcia R, Paradas C, Sevilla T, Casasnovas C, Gómez-Caravaca MT, Pardo J, Ramos-Fransi A, et al. Drug-refractory myasthenia gravis: clinical characteristics, treatments, and outcome. Ann Clin Transl Neurol. 2022;9(2):122–31.

Article  PubMed  PubMed Central  Google Scholar 

Sugimoto T, Ochi K, Ishikawa R, Tazuma T, Hayashi M, Mine N, Naito H, Nomura E, Kohriyama T, Yamawaki T. Initial deterioration and intravenous methylprednisolone therapy in patients with myasthenia gravis. J Neurol Sci. 2020;412:116740.

Article  CAS  PubMed  Google Scholar 

Menon D, Bril V. Pharmacotherapy of generalized myasthenia gravis with special emphasis on newer biologicals. Drugs. 2022;82(8):865–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vincent FB, Saulep-Easton D, Figgett WA, Fairfax KA, Mackay F. The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev. 2013;24(3):203–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhillon S. Telitacicept: first approval. Drugs. 2021;81(14):1671–5.

Article  CAS  PubMed  Google Scholar 

Ren Y, Chen S, Yang H. Case Report: Telitacicept in treating a patient with NF155 + autoimmune nodopathy: a successful attempt to manage recurrent elevated sero-anti-NF155 antibodies. Front Immunol. 2023;14:1279808.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Merrill JT, Wallace DJ, Wax S, Kao A, Fraser PA, Chang P, Isenberg D. Efficacy and safety of atacicept in patients with systemic Lupus Erythematosus: results of a twenty-Four-Week, Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Arm, phase IIb study. Arthritis Rheumatol. 2018;70(2):266–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kappos L, Hartung HP, Freedman MS, Boyko A, Radü EW, Mikol DD, Lamarine M, Hyvert Y, Freudensprung U, Plitz T, et al. Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol. 2014;13(4):353–63.

留言 (0)

沒有登入
gif