Dimorphic effect of TFE3 in determining mitochondrial and lysosomal content in muscle following denervation

Memme JM, Slavin M, Moradi N, Hood DA. Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse. Int J Mol Sci. 2021, Vol 22, Page 5179 [Internet]. Multidisciplinary Digital Publishing Institute; 2021 [cited 2022 Jan 10];22:5179. Available from: https://www.mdpi.com/1422-0067/22/10/5179/htm.

Metter EJ, Talbot LA, Schrager M, Conwit R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. Journals Gerontol - Ser Biol Sci Med Sci. 2002;57:B359–65.

Article  Google Scholar 

Lipes J, Mardini L, Jayaraman D. Sex and mortality of hospitalization admission to an intensive care. Am J Crit Care. 2013;22:314–9.

Article  PubMed  Google Scholar 

Powers SK, Wiggs MP, Duarte JA, Murat Zergeroglu A, Demirel HA, Zergeroglu AM et al. Mitochondrial signaling contributes to disuse muscle atrophy. Am J Physiol Endocrinol Metab [Internet]. 2012 [cited 2018 Feb 27];303:E31–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3404565%7B&%7Dtool=pmcentrez%7B&%7Drendertype=abstract

Carafoli E, Margreth A, Buffa P. Early biochemical changes in mitochondria from denervated muscle and their relation to the onset of atrophy. Exp Mol Pathol. 1964;3:171–81.

Article  CAS  PubMed  Google Scholar 

Hyatt H, Deminice R, Yoshihara T, Powers SK. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: a review of the causes and effects. Volume 662. Arch Biochem Biophys. Academic Press Inc.; 2019. pp. 49–60.

Memme JM, Oliveira AN, Hood DA. p53 regulates skeletal muscle mitophagy and mitochondrial quality control following denervation-induced muscle disuse. J Biol Chem [Internet]. Elsevier BV; 2022 [cited 2022 Feb 7];298:101540. Available from: http://www.jbc.org/article/S0021925821013508/fulltext.

Kang C, Goodman C, a, Hornberger Ta, Ji LL. PGC-1$α$ overexpression by in vivo transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization. FASEB J [Internet]. 2015; Available from: http://www.ncbi.nlm.nih.gov/pubmed/26178167.

Vainshtein A, Desjardins EM, Armani A, Sandri M, Hood DA. PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skelet Muscle [Internet]. BioMed Central; 2015 [cited 2018 Feb 20];5:9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4381453%7B&%7Dtool=pmcentrez%7B&%7Drendertype=abstract

Hood DA, Memme JM, Oliveira AN, Triolo M. Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and aging. Annu Rev Physiol. Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, California 94303-0139, USA; 2019;81:19–41.

Adhihetty PJ, O ’leary MFN, Chabi B, Wicks KL, Hood DA, O’Leary MFNN et al. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle. J Appl Physiol. J Appl Physiol (1985); 2007;102:1143–51.

Wicks KL, Hood DA. Mitochondrial adaptations in denervated muscle: relationship to muscle performance. Am J Physiol - Cell Physiol. 1991;260:C841–50.

Article  CAS  Google Scholar 

Trevino MB, Zhang X, Standley RA, Wang M, Han X, Reis FCG, et al. Loss of mitochondrial energetics is associated with poor recovery of muscle function but not mass following disuse atrophy. Am J Physiol - Endocrinol Metab Am Physiological Soc. 2019;317:E899–910.

CAS  Google Scholar 

Zhang X, Trevino MB, Wang M, Gardell SJ, Ayala JE, Han X et al. Impaired Mitochondrial Energetics Characterize Poor Early Recovery of Muscle Mass Following Hind Limb Unloading in Old Mice - PubMed. Journals Gerontol A Biol Sci Med Sci [Internet]. 2018 [cited 2020 Jun 8];10:1313–22. Available from: https://pubmed.ncbi.nlm.nih.gov/29562317/.

Min K, Smuder AJ, Kwon O, Kavazis AN, Szeto HH, Powers SK. Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. J Appl Physiol [Internet]. 2011;111:1459–66. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3220313%7B&%7Dtool=pmcentrez%7B&%7Drendertype=abstract

Smuder AJ, Sollanek KJ, Nelson WB, Min K, Talbert EE, Kavazis AN, et al. Crosstalk between autophagy and oxidative stress regulates proteolysis in the diaphragm during mechanical ventilation. Volume 115. Elsevier Inc.; 2018. pp. 179–90. Available from: /pmc/articles/PMC5767544/?report = abstract. Free Radic Biol Med [Internet].

Hyatt HW, Powers SK. The Role of Calpains in Skeletal Muscle Remodeling with Exercise and Inactivity-induced Atrophy. Int J Sports Med [Internet]. Georg Thieme Verlag KG; 2020 [cited 2021 Oct 17];41:994–1008. Available from: http://www.thieme-connect.com/products/ejournals/html/https://doi.org/10.1055/a-1199-7662.

Rosa-Caldwell ME, Lim S, Haynie WS, Jansen LT, Westervelt LC, Amos MG et al. Altering aspects of mitochondrial quality to improve musculoskeletal outcomes in disuse atrophy. J Appl Physiol [Internet]. 2020 [cited 2021 Sep 21];129:1290–303. Available from: https://journals-physiology-org.ezproxy.library.yorku.ca/doi/abs/https://doi.org/10.1152/japplphysiol.00407.2020.

Rosa-Caldwell ME, Lim S, Haynie WS, Brown JL, Lee DE, Dunlap KR, et al. Mitochondrial aberrations during the progression of disuse atrophy differentially affect male and female mice. Wiley-Blackwell; 2021. [cited 2022 Jan 10];12:2056. Available from: /pmc/articles/PMC8718086/. J Cachexia Sarcopenia Muscle [Internet].

Kang C, Yeo D, Ji LL. Muscle immobilization activates mitophagy and disrupts mitochondrial dynamics in mice. Acta Physiol [Internet]. Blackwell Publishing Ltd; 2016 [cited 2018 Feb 20];218:188–97. https://doi.org/10.1111/apha.12690.

Triolo M, Slavin M, Moradi N, Hood DA. Time-dependent changes in autophagy, mitophagy and lysosomes in skeletal muscle during denervation-induced disuse. J Physiol [Internet]. John Wiley & Sons, Ltd; 2022 [cited 2022 Feb 7]; Available from: https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1113/JP282173.

O’Leary MF, Vainshtein A, Iqbal S, Ostojic O, Hood DA. Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle. Am J Physiol Physiol [Internet]. American Physiological Society Bethesda, MD; 2013 [cited 2018 Feb 26];304:C422–30. Available from: http://www.physiology.org/doi/https://doi.org/10.1152/ajpcell.00240.2012.

Frank M, Duvezin-Caubet S, Koob S, Occhipinti A, Jagasia R, Petcherski A et al. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim Biophys Acta - Mol Cell Res [Internet]. Elsevier B.V.; 2012;1823:2297–310. https://doi.org/10.1016/j.bbamcr.2012.08.007.

Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol [Internet]. The Rockefeller University Press; 2010 [cited 2018 Feb 16];189:211–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20404107.

Wang Y, Nartiss Y, Steipe B, McQuibban GA, Kim PK. ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy. 2012;8:1462–76.

Article  CAS  PubMed  Google Scholar 

Killackey SA, Bi Y, Soares F, Hammi I, Winsor NJ, Abdul-Sater AA et al. Mitochondrial protein import stress regulates the LC3 lipidation step of mitophagy through NLRX1 and RRBP1. Mol Cell [Internet]. Elsevier Inc.; 2022;1–17. https://doi.org/10.1016/j.molcel.2022.06.004.

Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep [Internet]. European Molecular Biology Organization; 2010 [cited 2018 Feb 13];11:45–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20010802.

Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol [Internet]. Nature Publishing Group; 2012 [cited 2018 Jul 11];14:177–85. Available from: http://www.nature.com/articles/ncb2422.

Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol [Internet]. The Royal Society; 2012 [cited 2018 Feb 13];2:120080. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22724072.

Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol Nat Publishing Group. 2013;14:283–96.

Article  CAS  Google Scholar 

Martina JA, Diab HI, Lishu L, Jeong-A L, Patange S, Raben N et al. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal [Internet]. NIH Public Access; 2014 [cited 2018 Jul 19];7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24448649.

Settembre C, Polito VA, Garcia M, Vetrini F, Erdin SSU, Erdin SSU et al. TFEB links autophagy to lysosomal biogenesis. Science [Internet]. Europe PMC Funders; 2011 [cited 2018 Feb 26];332:1429–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21617040.

Wang H, Wang N, Xu D, Ma Q, Chen Y, Xu S et al. Oxidation of multiple MiT/TFE transcription factors links oxidative stress to transcriptional control of autophagy and lysosome biogenesis. Autophagy [Internet]. Taylor and Francis Inc.; 2020 [cited 2021 Feb 3];16:1683–96. Available from: https://www.tandfonline.com/doi/full/https://doi.org/10.1080/15548627.2019.1704104.

Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol [Internet]. NIH Public Access; 2015 [cited 2018 Feb 26];17:288–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25720963.

Napolitano G, Ballabio A. TFEB at a glance. J Cell Sci. 2016;129:2475–81.

CAS  PubMed  PubMed Central  Google Scholar 

Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VAC, Di Malta FD et al. A Gene Network Regulating Lysosomal Biogenesis and Function. Science [Internet]. American Association for the Advancement of Science; 2009 [cited 2018 Feb 26];325:473–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19556463.

Triolo M, Oliveira AN, Kumari R, Hood DA. The influence of age, sex, and exercise on autophagy, mitophagy, and lysosome biogenesis in skeletal muscle. Skelet Muscle [Internet]. BioMed Central Ltd; 2022 [cited 2022 Aug 14];12:1–18. Available from: https://skeletalmusclejournal.biomedcentral.com/articles/https://doi.org/10.1186/s13395-022-00296-7.

Oliván S, Calvo AC, Manzano R, Zaragoza P, Osta R. Sex Differences in Constitutive Autophagy. Biomed Res Int [Internet]. Hindawi Limited; 2014 [cited 2021 Sep 29];2014. Available from: /pmc/articles/PMC3955681/

Pastore N, Vainshtein A, Klisch TJ, Armani A, Huynh T, Herz NJ, et al. TFE3 regulates whole-body energy metabolism in cooperation with TFEB. EMBO Mol Med. 2017;9:605–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen CCCW, Erlich AT, Hood DA. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle. Skelet Muscle [Internet]. BioMed Central; 2018 [cited 2018 Apr 17];8:1–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29549884.

Ozturk DG, Kocak M, Akcay A, Kinoglu K, Kara E, Buyuk Y et al. MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress. Autophagy [Internet]. Taylor & Francis; 2019;15:375–90. https://doi.org/10.1080/15548627.2018.1531197.

Milan G, Romanello V, Pescatore F, Armani A, Paik J-H, Frasson L et al. Regulation of autophagy and the ubiquitin–proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 2015 61 [Internet]. Nature Publishing Group; 2015 [cited 2021 Oct 18];6:1–14. Available from: https://www.nature.com/articles/ncomms7670.

Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, et al. FoxO3 Coordinately activates protein degradation by the Autophagic/Lysosomal and Proteasomal Pathways in atrophying muscle cells. Cell Metab Elsevier. 2007;6:472–83.

Article  CAS  Google Scholar 

Oliveira AN, Tamura Y, Memme JM, Hood DA. Role of TFEB and TFE3 in mediating lysosomal and mitochondrial adaptations to contractile activity in skeletal muscle myotubes. Mitochondrial Commun. 2023;1:73–87.

Article  Google Scholar 

Wong JC, Oliveira AN, Khemraj P, Hood DA. The role of TFE3 in mediating skeletal muscle mitochondrial adaptations to Exercise Training. J Appl Physiol. 2023;Online ahead of print.

Rosa-Caldwell ME, Lim S, Haynie WA, Brown JL, Deaver JW, Silva FM, Da et al. Female mice may have exacerbated catabolic signalling response compared to male mice during development and progression of disuse atrophy. J Cachexia Sarcopenia Muscle [Internet]. Springer Nature; 2021 [cited 2021 Sep 21];12:717–30. Available from: https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/jcsm.12693.

Mortreux M, Rosa-Caldwell ME, Stiehl ID, Sung DM, Thomas NT, Fry CS, et al. Hindlimb suspension in Wistar rats: sex-based differences in muscle response. Physiol Rep. 2021;9:1–15.

Article  Google Scholar 

Sugiura T, Ito N, Goto K, Naito H, Yoshioka T, Powers SK. Estrogen administration attenuates immobilization-induced skeletal muscle atrophy in male rats. J Physiol Sci. 2006;56:393–9.

Article  CAS  PubMed  Google Scholar 

O′Leary MFN, Vainshtein A, Carter HN, Zhang Y, Hood DA. Denervation-induced mitochondrial dysfunction and autophagy in skeletal muscle of apoptosis-deficient animals. Am J Physiol Physiol [Internet]. American Physiological Society Bethesda, MD; 2012 [cited 2020 Apr 22];303:C447–54. Available from: https://www.physiology.org/doi/https://doi.org/10.1152/ajpcell.00451.2011.

Muller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A et al. Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am J Physiol Regul Integr Comp Physiol [Internet]. American Physiological Society; 2007;293:R1159–68. Available from: http://www.physiology.org/doi/https://doi.org/10.1152/ajpregu.00767.2006.

Singh K, Hood DA. Effect of denervation-induced muscle disuse on mitochondrial protein import. Am J Physiol - Cell Physiol [Internet]. American Physiological Society Bethesda, MD; 2011 [cited 2018 Nov 14];300:C138-145. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20943961.

Castets P, Lin S, Rion N, Di Fulvio S, Romanino K, Guridi M, et al. Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and Starvation-Induced Autophagy and causes a severe, late-onset myopathy. Cell Metab Cell Press. 2013;17:731–44.

Article  CAS  Google Scholar 

Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M et al. Autophagy Is Required to Maintain Muscle Mass. Cell Metab [Internet]. Elsevier Ltd; 2009;10:507–15. https://doi.org/10.1016/j.cmet.2009.10.008.

Irazoki A, Martinez-Vicente M, Aparicio P, Aris C, Alibakhshi E, Rubio-Valera M, et al. Coordination of mitochondrial and lysosomal homeostasis mitigates inflammation and muscle atrophy during aging. Aging Cell. 2022;21:1–16.

Article  Google Scholar 

Kissing S, Hermsen C, Repnik U, Nesset CK, Von Bargen K, Griffiths G, et al. Vacuolar ATPase in phagosome-lysosome fusion. J Biol Chem. 2015;290:14166–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Cheng X, Yu L, Yang J, Calvo R, Patnaik S, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun. 2016;7:12109.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu H, Ren D. Lysosomal physiology. Annu Rev Physiol. 2015;77:57–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif