Motor neurons and endothelial cells additively promote development and fusion of human iPSC-derived skeletal myocytes

Murrant CL, Fletcher NM, Fitzpatrick EJH, Gee KS. Do skeletal muscle motor units and microvascular units align to help match blood flow to metabolic demand? Eur J Appl Physiol. 2021;121(5):1241–54.

Article  CAS  Google Scholar 

Heckman CJ, Enoka RM. Physiology of the motor neuron and the motor unit. Handb Clin Neurophysiology. 2004;4:119–47.

Article  Google Scholar 

Latroche C, Weiss-Gayet M, Muller L, Gitiaux C, Leblanc P, Liot S, et al. Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages. Stem Cell Rep. 2017;9(6):2018–33.

Article  CAS  Google Scholar 

Kostallari E, Baba-Amer Y, Alonso-Martin S, Ngoh P, Relaix F, Lafuste P, et al. Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development. 2015;142(7):1242–53.

CAS  Google Scholar 

Christov C, Chrétien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell. 2007;18(4):1397–409.

Article  CAS  Google Scholar 

Chen X, Aledia AS, Ghajar CM, Griffith CK, Putnam AJ, Hughes CCW, et al. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Pt A. 2009;15(6):1363–71.

Article  CAS  Google Scholar 

Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 2005;23(7):879–84.

Article  CAS  Google Scholar 

Das S, Gordián-Vélez WJ, Ledebur HC, Mourkioti F, Rompolas P, Chen HI, et al. Innervation: the missing link for biofabricated tissues and organs. Npj Regen Medicine. 2020;5(1):11.

Article  Google Scholar 

Witzemann V. Development of the neuromuscular junction. Cell Tissue Res. 2006;326(2):263–71.

Article  Google Scholar 

Liu W, Chakkalakal JV. Chapter Four The composition, development, and regeneration of neuromuscular junctions. Curr Top Dev Biol. 2018;126:99–124.

Article  Google Scholar 

Das S, Browne KD, Laimo FA, Maggiore JC, Hilman MC, Kaisaier H, et al. Pre-innervated tissue-engineered muscle promotes a pro-regenerative microenvironment following volumetric muscle loss. Commun Biology. 2020;3(1):330.

Article  CAS  Google Scholar 

Dittlau KS, Krasnow EN, Fumagalli L, Vandoorne T, Baatsen P, Kerstens A, et al. Human motor units in microfluidic devices are impaired by FUS mutations and improved by HDAC6 inhibition. Stem Cell Rep. 2021;16(9):2213–27.

Article  Google Scholar 

Happe CL, Tenerelli KP, Gromova AK, Kolb F, Engler AJ. Mechanically patterned neuromuscular junctions-in-a-dish have improved functional maturation. Mol Biol Cell. 2017;28(14):1950–8.

Article  CAS  Google Scholar 

Morimoto Y, Kato-Negishi M, Onoe H, Takeuchi S. Three-dimensional neuron–muscle constructs with neuromuscular junctions. Biomaterials. 2013;34(37):9413–9.

Article  CAS  Google Scholar 

Das M, Rumsey JW, Bhargava N, Stancescu M, Hickman JJ. A defined long-term in vitro tissue engineered model of neuromuscular junctions. Biomaterials. 2010;31(18):4880–8.

Article  CAS  Google Scholar 

Natarajan A, Sethumadhavan A, Krishnan UM. Toward building the neuromuscular junction: in vitro models to study synaptogenesis and neurodegeneration. ACS Omega. 2019;4(7):12969–77.

Article  CAS  Google Scholar 

Pashos EE, Park Y, Wang X, Raghavan A, Yang W, Abbey D, et al. Large, diverse population cohorts of hiPSCs and derived hepatocyte-like cells reveal functional genetic variation at blood lipid-associated loci. Cell Stem Cell. 2017;20(4):558-570.e10.

Article  CAS  Google Scholar 

Hicks MR, Hiserodt J, Paras K, Fujiwara W, Eskin A, Jan M, et al. ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs. Nat Cell Biol. 2018;20(1):46–57.

Article  CAS  Google Scholar 

Chal J, Tanoury ZA, Hestin M, Gobert B, Aivio S, Hick A, et al. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat Protoc. 2016;11(10):1833–50.

Article  CAS  Google Scholar 

Freundt JK, Linke WA. Titin as a force-generating muscle protein under regulatory control. J Appl Physiol. 2019;126(5):1474–82.

Article  CAS  Google Scholar 

Wei B, Lu Y, Jin J-P. Deficiency of slow skeletal muscle troponin T causes atrophy of type I slow fibres and decreases tolerance to fatigue. J Physiology. 2014;592(6):1367–80.

Article  CAS  Google Scholar 

Rasmussen M, Jin JP. Troponin variants as markers of skeletal muscle health and diseases. Front Physiol. 2021;12:747214.

Article  Google Scholar 

Yotsumoto F, Fukami T, Yagi H, Funakoshi A, Yoshizato T, Kuroki M, et al. Amphiregulin regulates the activation of ERK and Akt through epidermal growth factor receptor and HER3 signals involved in the progression of pancreatic cancer. Cancer Sci. 2010;101(11):2351–60.

Article  CAS  Google Scholar 

Badiola-Mateos M, Hervera A, del Río JA, Samitier J. Challenges and future prospects on 3D in-vitro modeling of the neuromuscular circuit. Frontiers Bioeng Biotechnol. 2018;6:194.

Article  Google Scholar 

Bakooshli MA, Lippmann ES, Mulcahy B, Iyer N, Nguyen CT, Tung K, et al. A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. Elife. 2019;8:e44530.

Article  CAS  Google Scholar 

Aydin O, Passaro AP, Elhebeary M, Pagan-Diaz GJ, Fan A, Nuethong S, et al. Development of 3D neuromuscular bioactuators. Apl Bioeng. 2020;4(1):016107.

Article  CAS  Google Scholar 

Luo B, Tian L, Chen N, Ramakrishna S, Thakor N, Yang IH. Electrospun nanofibers facilitate better alignment, differentiation, and long-term culture in an in vitro model of the neuromuscular junction (NMJ). Biomater Sci-uk. 2018;6(12):3262–72.

Article  CAS  Google Scholar 

Kim JH, Kim I, Seol YJ, Ko IK, Yoo JJ, Atala A, et al. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat Commun. 2020;11(1):1025.

Article  ADS  CAS  Google Scholar 

Gholobova D, Decroix L, Muylder VV, Desender L, Gerard M, Carpentier G, et al. Endothelial network formation within human tissue-engineered skeletal muscle. Tissue Eng Pt A. 2015;21(19–20):2548–58.

Article  CAS  Google Scholar 

Kim H, Osaki T, Kamm RD, Asada HH. Tri-culture of spatially organizing human skeletal muscle cells, endothelial cells, and fibroblasts enhances contractile force and vascular perfusion of skeletal muscle tissues. Faseb J. 2022;36(8):e22453.

Article  CAS  Google Scholar 

Bezenah JR, Rioja AY, Juliar B, Friend N, Putnam AJ. Assessing the ability of human endothelial cells derived from induced-pluripotent stem cells to form functional microvasculature in vivo. Biotechnol Bioeng. 2019;116(2):415–26.

Article  CAS  Google Scholar 

Bezenah JR, Kong YP, Putnam AJ. Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Sci Rep. 2018;8(1):2671.

Article  ADS  Google Scholar 

Uwamori H, Higuchi T, Arai K, Sudo R. Integration of neurogenesis and angiogenesis models for constructing a neurovascular tissue. Sci Rep-uk. 2017;7(1):17349.

Article  ADS  Google Scholar 

Maffioletti SM, Sarcar S, Henderson ABH, Mannhardt I, Pinton L, Moyle LA, et al. Three-dimensional human iPSC-derived artificial skeletal muscles model muscular dystrophies and enable multilineage tissue engineering. Cell Rep. 2018;23(3):899–908.

Article  CAS  Google Scholar 

Pinton L, Khedr M, Lionello VM, Sarcar S, Maffioletti SM, Dastidar S, Negroni E, Choi S, Khokhar N, Bigot A, Counsell JR, Bernardo AS, Zammit PS, Tedesco FS. 3D human induced pluripotent stem cellderived bioengineered skeletal muscles for tissue, disease and therapy modeling. Nat Protoc. 2023;18(4):1337–76.

Article  CAS  Google Scholar 

Shelton M, Metz J, Liu J, Carpenedo RL, Demers SP, Stanford WL, et al. Derivation and expansion of PAX7-positive muscle progenitors from human and mouse embryonic stem cells. Stem Cell Rep. 2014;3(3):516–29.

Article  CAS  Google Scholar 

Borchin B, Chen J, Barberi T. Derivation and FACS-mediated purification of PAX3+/PAX7+ skeletal muscle precursors from human pluripotent stem cells. Stem Cell Rep. 2013;1(6):620–31.

Article  CAS  Google Scholar 

Chal J, Oginuma M, Tanoury ZA, Gobert B, Sumara O, Hick A, et al. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol. 2015;33(9):962–9.

Article  CAS  Google Scholar 

Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM, Schiaffino S. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc National Acad Sci. 2002;99(14):9213–8.

Article  ADS  CAS  Google Scholar 

Nie Y, Sato Y, Garner RT, Kargl C, Wang C, Kuang S, et al. Skeletal muscle-derived exosomes regulate endothelial cell functions via reactive oxygen species-activated nuclear factor-κB signalling. Exp Physiol. 2019;104(8):1262–73.

Article  CAS  Google Scholar 

Madison RD, Robinson GA. Muscle-derived extracellular vesicles influence motor neuron regeneration accuracy. Neuroscience. 2019;419:46–59.

Article  CAS  Google Scholar 

Obinata T, Maruyama K, Sugita H, Kohama K, Ebashi S. Dynamic aspects of structural proteins in vertebrate skeletal muscle. Muscle Nerve. 1981;4(6):456–88.

Article  CAS 

留言 (0)

沒有登入
gif