Cx43 hemichannels and panx1 channels contribute to ethanol-induced astrocyte dysfunction and damage

Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci. 2005;8(11):1442–4.

Article  CAS  PubMed  Google Scholar 

Organization WH. Global status report on alcohol and health 2018. Geneva: Licence: CC BY-NC-SA 3.0 IGO.; 2018.

Morisot N, Ron D. Alcohol-dependent molecular adaptations of the NMDA receptor system. Genes Brain Behav. 2017;16(1):139–48.

Article  CAS  PubMed  Google Scholar 

Forstera B, Castro PA, Moraga-Cid G, Aguayo LG. Potentiation of Gamma Aminobutyric Acid receptors (GABAAR) by ethanol: how are inhibitory receptors affected? Front Cell Neurosci. 2016;10:114.

Article  PubMed  PubMed Central  Google Scholar 

Burgos CF, Munoz B, Guzman L, Aguayo LG. Ethanol effects on glycinergic transmission: from molecular pharmacology to behavior responses. Pharmacol Res. 2015;101:18–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kranzler HR, Soyka M. Diagnosis and pharmacotherapy of Alcohol Use Disorder: a review. JAMA. 2018;320(8):815–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez A, Salido GM. Ethanol alters the physiology of neuron-glia communication. Int Rev Neurobiol. 2009;88:167–98.

Article  CAS  PubMed  Google Scholar 

Blanco AM, Guerri C. Ethanol intake enhances inflammatory mediators in brain: role of glial cells and TLR4/IL-1RI receptors. Front Biosci. 2007;12:2616–30.

Article  CAS  PubMed  Google Scholar 

Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009;32(8):421–31.

Article  CAS  PubMed  Google Scholar 

Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10(11):1369–76.

Article  CAS  PubMed  Google Scholar 

Weber B, Barros LF. The astrocyte: powerhouse and Recycling Center. Cold Spring Harb Perspect Biol. 2015;7(12).

Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V, et al. Astrocytes: a central element in neurological diseases. Acta Neuropathol. 2016;131(3):323–45.

Article  CAS  PubMed  Google Scholar 

Adermark L, Bowers MS. Disentangling the role of astrocytes in Alcohol Use Disorder. Alcohol Clin Exp Res. 2016;40(9):1802–16.

Article  PubMed  PubMed Central  Google Scholar 

Fletcher TL, Shain W. Ethanol-induced changes in astrocyte gene expression during rat central nervous system development. Alcohol Clin Exp Res. 1993;17(5):993–1001.

Article  CAS  PubMed  Google Scholar 

Gomez GI, Falcon RV, Maturana CJ, Labra VC, Salgado N, Rojas CA, et al. Heavy alcohol exposure activates Astroglial Hemichannels and pannexons in the Hippocampus of adolescent rats: effects on Neuroinflammation and Astrocyte Arborization. Front Cell Neurosci. 2018;12:472.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez A, Pariente JA, Salido GM. Ethanol stimulates ROS generation by mitochondria through Ca2 + mobilization and increases GFAP content in rat hippocampal astrocytes. Brain Res. 2007;1178:28–37.

Article  CAS  PubMed  Google Scholar 

Valles S, Pitarch J, Renau-Piqueras J, Guerri C. Ethanol exposure affects glial fibrillary acidic protein gene expression and transcription during rat brain development. J Neurochem. 1997;69(6):2484–93.

Article  CAS  PubMed  Google Scholar 

Renau-Piqueras J, Zaragoza R, De Paz P, Baguena-Cervellera R, Megias L, Guerri C. Effects of prolonged ethanol exposure on the glial fibrillary acidic protein-containing intermediate filaments of astrocytes in primary culture: a quantitative immunofluorescence and immunogold electron microscopic study. J Histochem Cytochem. 1989;37(2):229–40.

Article  CAS  PubMed  Google Scholar 

Blanco AM, Pascual M, Valles SL, Guerri C. Ethanol-induced iNOS and COX-2 expression in cultured astrocytes via NF-kappa B. NeuroReport. 2004;15(4):681–5.

Article  CAS  PubMed  Google Scholar 

Blanco AM, Valles SL, Pascual M, Guerri C. Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol. 2005;175(10):6893–9.

Article  CAS  PubMed  Google Scholar 

Alfonso-Loeches S, Urena-Peralta JR, Morillo-Bargues MJ, Oliver-De La Cruz J, Guerri C. Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells. Front Cell Neurosci. 2014;8:216.

Article  PubMed  PubMed Central  Google Scholar 

Montoliu C, Sancho-Tello M, Azorin I, Burgal M, Valles S, Renau-Piqueras J, et al. Ethanol increases cytochrome P4502E1 and induces oxidative stress in astrocytes. J Neurochem. 1995;65(6):2561–70.

Article  CAS  PubMed  Google Scholar 

Holownia A, Ledig M, Menez JF. Ethanol-induced cell death in cultured rat astroglia. Neurotoxicol Teratol. 1997;19(2):141–6.

Article  CAS  PubMed  Google Scholar 

Allansson L, Khatibi S, Olsson T, Hansson E. Acute ethanol exposure induces [Ca2+]i transients, cell swelling and transformation of actin cytoskeleton in astroglial primary cultures. J Neurochem. 2001;76(2):472–9.

Article  CAS  PubMed  Google Scholar 

Kim HB, Lu Y, Oh SC, Morris J, Miyashiro K, Kim J, et al. Astrocyte ethanol exposure reveals persistent and defined calcium response subtypes and associated gene signatures. J Biol Chem. 2022;298(8):102147.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adermark L, Olsson T, Hansson E. Ethanol acutely decreases astroglial gap junction permeability in primary cultures from defined brain regions. Neurochem Int. 2004;45(7):971–8.

Article  CAS  PubMed  Google Scholar 

Kimelberg HK, Cheema M, O’Connor ER, Tong H, Goderie SK, Rossman PA. Ethanol-induced aspartate and taurine release from primary astrocyte cultures. J Neurochem. 1993;60(5):1682–9.

Article  CAS  PubMed  Google Scholar 

Syrjanen J, Michalski K, Kawate T, Furukawa H. On the molecular nature of large-pore channels. J Mol Biol. 2021;433(17):166994.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abudara V, Roux L, Dallerac G, Matias I, Dulong J, Mothet JP, et al. Activated microglia impairs neuroglial interaction by opening Cx43 hemichannels in hippocampal astrocytes. Glia. 2015;63(5):795–811.

Article  PubMed  Google Scholar 

Garre JM, Yang G, Bukauskas FF, Bennett MV. FGF-1 triggers Pannexin-1 Hemichannel opening in spinal astrocytes of rodents and promotes inflammatory responses in Acute spinal cord slices. J Neurosci. 2016;36(17):4785–801.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santiago MF, Veliskova J, Patel NK, Lutz SE, Caille D, Charollais A, et al. Targeting pannexin1 improves seizure outcome. PLoS ONE. 2011;6(9):e25178.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yi C, Mei X, Ezan P, Mato S, Matias I, Giaume C, et al. Astroglial connexin43 contributes to neuronal suffering in a mouse model of Alzheimer’s disease. Cell Death Differ. 2016;23(10):1691–701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gajardo-Gomez R, Santibanez CA, Labra VC, Gomez GI, Eugenin EA, Orellana JA. HIV gp120 Protein Increases the Function of Connexin 43 Hemichannels and Pannexin-1 Channels in Astrocytes: Repercussions on Astroglial Function. International journal of molecular sciences. 2020;21(7).

Chavez CE, Oyarzun JE, Avendano BC, Mellado LA, Inostroza CA, Alvear TF, et al. The opening of Connexin 43 Hemichannels alters hippocampal astrocyte function and neuronal survival in prenatally LPS-Exposed adult offspring. Front Cell Neurosci. 2019;13:460.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diaz EF, Labra VC, Alvear TF, Mellado LA, Inostroza CA, Oyarzun JE, et al. Connexin 43 hemichannels and pannexin-1 channels contribute to the alpha-synuclein-induced dysfunction and death of astrocytes. Glia. 2019;67(8):1598–619.

Article  PubMed  Google Scholar 

Almad AA, Taga A, Joseph J, Gross SK, Welsh C, Patankar A, et al. Cx43 hemichannels contribute to astrocyte-mediated toxicity in sporadic and familial ALS. Proc Natl Acad Sci U S A. 2022;119(13):e2107391119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif