Noncoding RNAs in skeletal development and disorders

International Human Genome Sequencing. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.

Article  Google Scholar 

Crick F. Central dogma of molecular biology. Nature. 1970;227(5258):561–3.

Article  CAS  PubMed  Google Scholar 

Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet. 2001;2(12):919–29.

Article  CAS  PubMed  Google Scholar 

Lee RC, Feinbaum RL, Ambros V. The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

Article  CAS  PubMed  Google Scholar 

Reinhart BJ, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.

Article  CAS  PubMed  Google Scholar 

Statello L, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.

Article  CAS  PubMed  Google Scholar 

Greene J, et al. Circular RNAs: Biogenesis, function and role in Human diseases. Front Mol Biosci. 2017;4:38.

Article  PubMed  PubMed Central  Google Scholar 

Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20(1):21–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bratkovic T, Bozic J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res. 2020;48(4):1627–51.

Article  CAS  PubMed  Google Scholar 

Salhotra A, et al. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696–711.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Consortium EP, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583(7818):699–710.

Article  Google Scholar 

She X, et al. Shotgun sequence assembly and recent segmental duplications within the human genome. Nature. 2004;431(7011):927–30.

Article  CAS  PubMed  Google Scholar 

Horvitz HR, Sulston JE. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 1980;96(2):435–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chalfie M, Horvitz HR, Sulston JE. Mutations that lead to reiterations in the cell lineages of C. Elegans. Cell. 1981;24(1):59–69.

Article  CAS  PubMed  Google Scholar 

Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. Elegans. Cell. 1993;75(5):855–62.

Article  CAS  PubMed  Google Scholar 

Denli AM, et al. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231–5.

Article  CAS  PubMed  Google Scholar 

Lee Y, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.

Article  CAS  PubMed  Google Scholar 

Han J, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10(2):185–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lund E, et al. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–8.

Article  CAS  PubMed  Google Scholar 

Bernstein E, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363–6.

Article  CAS  PubMed  Google Scholar 

Hammond SM, et al. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science. 2001;293(5532):1146–50.

Article  CAS  PubMed  Google Scholar 

Mourelatos Z, et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 2002;16(6):720–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–62.

Article  CAS  PubMed  Google Scholar 

Alles J, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47(7):3353–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.

Article  CAS  PubMed  Google Scholar 

Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019;20(1):5–20.

Article  CAS  PubMed  Google Scholar 

O’Brien J, et al. Overview of MicroRNA Biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402.

Article  PubMed  Google Scholar 

Mattick JS, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–47.

Article  CAS  PubMed  Google Scholar 

Uszczynska-Ratajczak B, et al. Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet. 2018;19(9):535–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang S, et al. NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 2018;46(D1):D308–14.

Article  CAS  PubMed  Google Scholar 

Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mele M, et al. Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res. 2017;27(1):27–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuckerman B, Ulitsky I. Predictive models of subcellular localization of long RNAs. RNA. 2019;25(5):557–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azam S, et al. Nuclear retention element recruits U1 snRNP components to restrain spliced lncRNAs in the nucleus. RNA Biol. 2019;16(8):1001–9.

Article  PubMed  PubMed Central  Google Scholar 

Pintacuda G, et al. hnRNPK recruits PCGF3/5-PRC1 to the Xist RNA B-Repeat to establish polycomb-mediated chromosomal silencing. Mol Cell. 2017;68(5):955–69. e10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu C, et al. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell. 2011;44(4):667–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonetti A, et al. RADICL-seq identifies general and cell type-specific principles of genome-wide RNA-chromatin interactions. Nat Commun. 2020;11(1):1018.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif