Increased levels and activation of the IL-17 receptor in microglia contribute to enhanced neuroinflammation in cerebellum of hyperammonemic rats

Felipo V, Urios A, Montesinos E, Molina I, Garcia-Torres ML, Civera M, Olmo JA, Ortega J, Martinez-Valls J, Serra MA, Cassinello N, Wassel A, Jordá E, Montoliu C. Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis. 2012;27(1):51–8. https://doi.org/10.1007/s11011-011-9269-3.

Article  CAS  PubMed  Google Scholar 

Felipo V. Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci. 2013;14(12):851–8. https://doi.org/10.1038/nrn3587.

Article  CAS  PubMed  Google Scholar 

Häussinger D, Dhiman RK, Felipo V, Görg B, Jalan R, Kircheis G, Merli M, Montagnese S, Romero-Gomez M, Schnitzler A, Taylor-Robinson SD, Vilstrup H. Hepatic encephalopathy. Nat Rev Dis Primers. 2022;8(1):43. https://doi.org/10.1038/s41572-022-00366-6.

Article  PubMed  Google Scholar 

Giménez-Garzó C, Garcés JJ, Urios A, Mangas-Losada A, García-García R, González-López O, Giner-Durán R, Escudero-García D, Serra MA, Soria E, Felipo V, Montoliu C. The PHES battery does not detect all cirrhotic patients with early neurological deficits, which are different in different patients. PLoS ONE. 2017;12(2): e0171211. https://doi.org/10.1371/journal.pone.0171211.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hassan SS, Baumgarten TJ, Ali AM, Füllenbach ND, Jördens MS, Häussinger D, Butz M, Schnitzler A, Groiss SJ. Cerebellar inhibition in hepatic encephalopathy. Clin Neurophysiol. 2019;130(6):886–92. https://doi.org/10.1016/j.clinph.2019.02.020.

Article  PubMed  Google Scholar 

Cauli O, Mansouri MT, Agusti A, Felipo V. Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Gastroenterology. 2009;136(4):1359-e2. https://doi.org/10.1053/j.gastro.2008.12.057.

Article  CAS  PubMed  Google Scholar 

Hernandez-Rabaza V, Cabrera-Pastor A, Taoro-Gonzalez L, Gonzalez-Usano A, Agusti A, Balzano T, Llansola M, Felipo V. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflamm. 2016;13(1):83. https://doi.org/10.1186/s12974-016-0549-z.

Article  CAS  Google Scholar 

Cabrera-Pastor A, Balzano T, Hernández-Rabaza V, Malaguarnera M, Llansola M, Felipo V. Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Brain Behav Immun. 2018;69:386–98. https://doi.org/10.1016/j.bbi.2017.12.013.

Article  CAS  PubMed  Google Scholar 

Arenas YM, Cabrera-Pastor A, Juciute N, Mora-Navarro E, Felipo V. Blocking glycine receptors reduces neuroinflammation and restores neurotransmission in cerebellum through ADAM17-TNFR1-NF-κβ pathway. J Neuroinflamm. 2020;17(1):269. https://doi.org/10.1186/s12974-020-01941-y.

Article  CAS  Google Scholar 

Arenas YM, Balzano T, Ivaylova G, Llansola M, Felipo V. The S1PR2-CCL2-BDNF-TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol Appl Neurobiol. 2022;48(4): e12799. https://doi.org/10.1111/nan.12799.

Article  CAS  PubMed  Google Scholar 

Arenas YM, Martínez-García M, Llansola M, Felipo V. Enhanced BDNF and TrkB activation enhance GABA neurotransmission in cerebellum in hyperammonemia. Int J Mol Sci. 2022;23(19):11770. https://doi.org/10.3390/ijms231911770.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mangas-Losada A, García-García R, Leone P, Ballester MP, Cabrera-Pastor A, Urios A, Gallego JJ, Martínez-Pretel JJ, Giménez-Garzó C, Revert F, Escudero-García D, Tosca J, Ríos MP, Montón C, Durbán L, Aparicio L, Montoliu C, Felipo V. Selective improvement by rifaximin of changes in the immunophenotype in patients who improve minimal hepatic encephalopathy. J Transl Med. 2019;17(1):293. https://doi.org/10.1186/s12967-019-2046-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mangas-Losada A, García-García R, Urios A, Escudero-García D, Tosca J, Giner-Durán R, Serra MA, Montoliu C, Felipo V. Minimal hepatic encephalopathy is associated with expansion and activation of CD4+CD28-, Th22 and Tfh and B lymphocytes. Sci Rep. 2017;7(1):6683. https://doi.org/10.1038/s41598-017-05938-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balzano T, Forteza J, Borreda I, Molina P, Giner J, Leone P, Urios A, Montoliu C, Felipo V. Histological features of cerebellar neuropathology in patients with alcoholic and nonalcoholic steatohepatitis. J Neuropathol Exp Neurol. 2018;77(9):837–45. https://doi.org/10.1093/jnen/nly061.

Article  CAS  PubMed  Google Scholar 

Das Sarma J, Ciric B, Marek R, Sadhukhan S, Caruso ML, Shafagh J, Fitzgerald DC, Shindler KS, Rostami A. Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J Neuroinflamm. 2009;6:14. https://doi.org/10.1186/1742-2094-6-14.

Article  CAS  Google Scholar 

Chen H, Tang X, Li J, Hu B, Yang W, Zhan M, Ma T, Xu S. IL-17 crosses the blood–brain barrier to trigger neuroinflammation: a novel mechanism in nitroglycerin-induced chronic migraine. J Headache Pain. 2022;23(1):1. https://doi.org/10.1186/s10194-021-01374-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou T, Liu Y, Yang Z, Ni B, Zhu X, Huang Z, Xu H, Feng Q, Lin X, He C, Liu X. IL-17 signaling induces iNOS+ microglia activation in retinal vascular diseases. Glia. 2021;69(11):2644–57. https://doi.org/10.1002/glia.24063.

Article  CAS  PubMed  Google Scholar 

Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, Milovanovic M, Arsenijevic N. Interleukin-17 in chronic inflammatory neurological diseases. Front Immunol. 2020;11:947. https://doi.org/10.3389/fimmu.2020.00947.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vellecco V, Saviano A, Raucci F, Casillo GM, Mansour AA, Panza E, Mitidieri E, Femminella GD, Ferrara N, Cirino G, Sorrentino R, Iqbal AJ, di Villa D, Bianca R, Bucci M, Maione F. Interleukin-17 (IL-17) triggers systemic inflammation, peripheral vascular dysfunction, and related prothrombotic state in a mouse model of Alzheimer’s disease. Pharmacol Res. 2023;187: 106595. https://doi.org/10.1016/j.phrs.2022.106595.

Article  CAS  PubMed  Google Scholar 

Felipo V, Miñana MD, Grisolía S. Long-term ingestion of ammonium increases acetylglutamate and urea levels without affecting the amount of carbamoyl-phosphate synthase. Eur J Biochem. 1988;176(3):567–71. https://doi.org/10.1111/j.1432-1033.1988.tb14315.x.

Article  CAS  PubMed  Google Scholar 

Taoro-Gonzalez L, Arenas YM, Cabrera-Pastor A, Felipo V. Hyperammonemia alters membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus by enhancing activation of the IL-1 receptor: underlying mechanisms. J Neuroinflamm. 2018;15(1):36. https://doi.org/10.1186/s12974-018-1082-z.

Article  CAS  Google Scholar 

Felipo V, Grau E, Miñana MD, Grisolía S. Ammonium injection induces an N-methyl-D-aspartate receptor-mediated proteolysis of the microtubule-associated protein MAP-2. J Neurochem. 1993;60(5):1626–30. https://doi.org/10.1111/j.1471-4159.1993.tb13384.x.

Article  CAS  PubMed  Google Scholar 

Cabrera-Pastor A, Taoro L, Llansola M, Felipo V. Roles of the NMDA receptor and EAAC1 transporter in the modulation of extracellular glutamate by low and high affinity AMPA receptors in the cerebellum in vivo: differential alteration in chronic hyperammonemia. ACS Chem Neurosci. 2015;6(12):1913–21. https://doi.org/10.1021/acschemneuro.5b00212.

Article  CAS  PubMed  Google Scholar 

Arenas YM, Felipo V. Sustained hyperammonemia activates NF-κB in Purkinje neurons through activation of the TrkB-PI3K-AKT pathway by microglia-derived BDNF in a rat model of minimal hepatic encephalopathy. Mol Neurobiol. 2023;60(6):3071–85. https://doi.org/10.1007/s12035-023-03264-4.

Article  CAS  PubMed  Google Scholar 

Balzano T, Arenas YM, Dadsetan S, Forteza J, Gil-Perotin S, Cubas-Nuñez L, Casanova B, Gracià F, Varela-Andrés N, Montoliu C, Llansola M, Felipo V. Sustained hyperammonemia induces TNF-a IN Purkinje neurons by activating the TNFR1-NF-κB pathway. J Neuroinflamm. 2020;17(1):70. https://doi.org/10.1186/s12974-020-01746-z.

Article  CAS  Google Scholar 

Khan D, Ansar Ahmed S. Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs. Front Genet. 2015;6:236. https://doi.org/10.3389/fgene.2015.00236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez-Usano A, Cauli O, Agusti A, Felipo V. Pregnenolone sulfate restores the glutamate-nitric-oxide-cGMP pathway and extracellular GABA in cerebellum and learning and motor coordination in hyperammonemic rats. ACS Chem Neurosci. 2014;5(2):100–5. https://doi.org/10.1021/cn400168y.

Article  CAS  PubMed  Google Scholar 

Dadsetan S, Balzano T, Forteza J, Agusti A, Cabrera-Pastor A, Taoro-Gonzalez L, Hernandez-Rabaza V, Gomez-Gimenez B, ElMlili N, Llansola M, Felipo V. Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J Neuroinflamm. 2016;13(1):245. https://doi.org/10.1186/s12974-016-0710-8.

Article  CAS  Google Scholar 

Cheng Q, Yeh HH. PLCgamma signaling underlies BDNF potentiation of Purkinje cell responses to GABA. J Neurosci Res. 2005;79(5):616–27. https://doi.org/10.1002/jnr.20397.

Article  CAS  PubMed  Google Scholar 

Drake-Baumann R. Rapid modulation of inhibitory synaptic currents in cerebellar Purkinje cells by BDNF. Synapse (New York, NY). 2005;57(4):183–90. https://doi.org/10.1002/syn.20170.

Article  CAS  Google Scholar 

Dai S, Ma Z. BDNF-trkB-KCC2-GABA pathway may be related to chronic stress-induced hyperalgesia at both the spinal and supraspinal level.

留言 (0)

沒有登入
gif