Have We Neglected to Study Target-Site Drug Exposure in Children? A Systematic Review of the Literature

Müller M, et al. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother. 2004;48(5):1441–53.

Article  PubMed  PubMed Central  Google Scholar 

Brunner M, et al. Surgery and intensive care procedures affect the target site distribution of piperacillin. Crit Care Med. 2000;28(6):1754–9.

Article  CAS  PubMed  Google Scholar 

Joukhadar C, et al. Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med. 2001;29(2):385–91.

Article  CAS  PubMed  Google Scholar 

Brunner M, et al. Microdialysis versus other techniques for the clinical assessment of in vivo tissue drug distribution. AAPS Journal. 2006;8(2):E263–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaurasia CS, et al. AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm Res. 2007;24(5):1014–25.

Article  CAS  PubMed  Google Scholar 

Fischman AJ, et al. Pharmacokinetic imaging: a noninvasive method for determining drug distribution and action. Clin Pharmacokinet. 2002;41(8):581–602.

Article  CAS  PubMed  Google Scholar 

Azeredo FJ, et al. Role of microdialysis in pharmacokinetics and pharmacodynamics: current status and future directions. Clin Pharmacokinet. 2014;53(3):205–12.

Article  CAS  PubMed  Google Scholar 

Rodvold KA, et al. Considerations for effect site pharmacokinetics to estimate drug exposure: concentrations of antibiotics in the lung. Curr Opin Pharmacol. 2017;36:114–23.

Article  CAS  PubMed  Google Scholar 

Shannon RJ, et al. Cerebral microdialysis in clinical studies of drugs: pharmacokinetic applications. J Pharmacokinet Pharmacodyn. 2013;40(3):343–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ray A, et al. Antibiotic Tissue Penetration in Diabetic Foot Infections A Review of the Microdialysis Literature and Needs for Future Research. J Am Podiatr Med Assoc. 2015;105(6):520–31.

Article  PubMed  Google Scholar 

Finazzi S, et al. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review-Part I. Antibiotics (Basel). 2022;11(9).

Viaggi B, et al. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review-Part II. Antibiotics (Basel). 2022;11(9).

van den Anker JN, et al. Developmental pharmacokinetics. Handb Exp Pharmacol. 2011;205:51–75.

Article  PubMed  Google Scholar 

Zuppa AF, et al. Pharmacokinetics and pharmacodynamics in the critically ill child. Pediatric clinics of North America. 2008;55(3):735-55, xii.

Sullins AK, et al. Pharmacokinetics of antibacterial agents in the CSF of children and adolescents. Paediatr Drugs. 2013;15(2):93–117.

Article  PubMed  Google Scholar 

Donald PR. Cerebrospinal fluid concentrations of antituberculosis agents in adults and children. Tuberculosis (Edinb). 2010;90(5):279–92.

Article  CAS  PubMed  Google Scholar 

Kanji S, et al. Reporting Guidelines for Clinical Pharmacokinetic Studies: The ClinPK Statement. Clin Pharmacokinet. 2015;54(7):783–95.

Article  PubMed  Google Scholar 

Keij FM, et al. Pharmacokinetics of Clavulanic Acid in the Pediatric Population: A Systematic Literature Review. Clin Pharmacokinet. 2022;61(5):637–53.

Article  PubMed  PubMed Central  Google Scholar 

Vervalcke J, et al. Pharmacokinetics and target attainment of ß-lactam antibiotics in older people: a systematic review of current literature. Clin Pharmacokinet. 2023;62(1):1–43.

Article  PubMed  Google Scholar 

Page MJ, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.

Article  PubMed  PubMed Central  Google Scholar 

Adrianzén Vargas MR, et al. Pharmacokinetics of intravenous flucloxacillin and amoxicillin in neonatal and infant cardiopulmonary bypass surgery. Eur J Cardiothorac Surg. 2004;25(2):256–60.

Article  PubMed  Google Scholar 

Averono G, et al. Evaluation of amoxicillin plasma and tissue levels in pediatric patients undergoing tonsillectomy. Int J Pediatr Otorhinolaryngol. 2010;74(9):995–8.

Article  PubMed  Google Scholar 

Meier H, et al. Penetration of ampicillin and sulbactam into human costal cartilage. Infection. 1994;22(2):152–5.

Article  CAS  PubMed  Google Scholar 

Ernstson S, et al. Penetration of cefaclor to adenoid tissue and middle ear effusion in chronic OME. Acta Otolaryngol. 1985;99:7–12.

Article  Google Scholar 

Himebauch AS, et al. Skeletal muscle and plasma concentrations of cefazolin during cardiac surgery in infants. J Thorac Cardiovasc Surg. 2014;148(6):2634–41.

Article  CAS  PubMed  Google Scholar 

Himebauch AS, et al. Skeletal muscle and plasma concentrations of cefazolin during complex paediatric spinal surgery. Br J Anaesth. 2016;117(1):87–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nahata MC, et al. Pharmacokinetics and tissue concentrations of cefazolin in pediatric patients undergoing gastrointestinal surgery. Eur J Drug Metab Pharmacokinet. 1991;16(1):49–52.

Article  CAS  PubMed  Google Scholar 

Tetzlaff TR, et al. Antibiotic concentrations in pus and bone of children with osteomyelitis. J Pediatr. 1978;92(1):135–40.

Article  CAS  PubMed  Google Scholar 

Bairamis TN, et al. Concentrations of cefpodoxime in plasma, adenoid, and tonsillar tissue after repeated administrations of cefpodoxime proxetil in children. J Antimicrob Chemother. 1996;37(4):821–4.

Article  CAS  PubMed  Google Scholar 

Shyu WC, et al. Penetration of cefprozil into tonsillar and adenoidal tissues. Antimicrob Agents Chemother. 1993;37(5):1180–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kobayashi M, et al. Ceftizoxime level in the myocardium (right atrial muscle and mitral papillary muscle) during open heart surgery. Jpn J Surg. 1988;18(2):136–41.

Article  CAS  PubMed  Google Scholar 

Green ER, et al. A comparison of the penetration characteristics of cephapirin and cephalothin into right atrial appendage, muscle, fat, and pericardial fluid of pediatric patients undergoing open-heart operation. Ann Thorac Surg. 1981;31(2):155–60.

Article  CAS  PubMed  Google Scholar 

Brzezinska H, et al. Concentrations of cloxacillin and erythromycin in the tonsils of children after administration of therapeutic doses. Int J Pediatr Otorhinolaryngol. 1984;7(1):51–61.

Article  CAS  PubMed  Google Scholar 

Saito H, et al. Pharmacokinetics of flomoxef in mucosal tissue of the middle ear and mastoid following intravenous administration in humans. Chemotherapy. 1990;36(3):193–9.

Article  CAS  PubMed  Google Scholar 

Roberts JA, et al. A novel way to investigate the effects of plasma exchange on antibiotic levels: use of microdialysis. Int J Antimicrob Agents. 2008;31(3):240–4.

Article  CAS  PubMed  Google Scholar 

Hermans E, et al. Microdialysis as a safe and feasible method to study target-site piperacillin-tazobactam disposition in septic piglets and children. Int J Antimicrob Agents. 2023;62(5): 106970.

Article  CAS  PubMed  Google Scholar 

Meier H, et al. Penetration of ticarcillin/clavulanate into cartilage. J Antimicrob Chemother. 1989;24:101–5.

Article  CAS  PubMed  Google Scholar 

Baschiera F, et al. Improved tonsillar disposition of azithromycin following a 3-day oral treatment with 20 mg kg(-1) in paediatric patients. Pharmacol Res. 2002;46(1):95–100.

Article  CAS  PubMed  Google Scholar 

Vaudaux BP, et al. Concentrations of azithromycin in tonsillar and/or adenoid tissue from paediatric patients. J Antimicrob Chemother. 1996;37:45–51.

Article  CAS  PubMed  Google Scholar 

Falchi M, et al. Penetration of erythromycin into tonsillar tissue. Curr Med Res Opin. 1985;9(9):611–5.

Article  CAS  PubMed  Google Scholar 

Sundberg L, et al. Penetration of erythromycin in Waldeyer’s ring-adenoid tissue. Acta Otolaryngol. 1981;92:3–9.

Article  Google Scholar 

Scaglione F, et al. Miocamycin distribution in tonsillar and pulmonary tissues after repeated administration. J Chemother.

留言 (0)

沒有登入
gif