Predictions of Bedaquiline Central Nervous System Exposure in Patients with Tuberculosis Meningitis Using Physiologically based Pharmacokinetic Modeling

Seddon JA, Wilkinson R, van Crevel R, et al. Knowledge gaps and research priorities in tuberculous meningitis. Wellcome Open Res. 2019;4:1–18. https://doi.org/10.12688/wellcomeopenres.15573.1.

Article  CAS  Google Scholar 

Navarro-Flores A, Fernandez-Chinguel JE, Pacheco-Barrios N, Soriano-Moreno DR, Pacheco-Barrios K. Global morbidity and mortality of central nervous system tuberculosis: a systematic review and meta-analysis. J Neurol. 2022;269(7):3482–94. https://doi.org/10.1007/s00415-022-11052-8.

Article  PubMed  PubMed Central  Google Scholar 

Nahid P, Dorman SE, Alipanah N, et al. Executive Summary: Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63(7):853–67. https://doi.org/10.1093/cid/ciw566.

Article  PubMed  PubMed Central  Google Scholar 

Ramachandran R, Muniyandi M. Towards improved treatment outcomes for tuberculosis meningitis—rethinking the regimen. Open Access J Neurol Neurosurg. 2018. https://doi.org/10.19080/OAJNN.2018.08.555734.

Article  Google Scholar 

Ruslami R, Ganiem AR, Dian S, Apriani L, Achmad TH, van der Ven AJ, Borm G, Aarnoutse RE, van Crevel R. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: an open-label, randomised controlled phase 2 trial. Lancet Infect Dis. 2013;13(1):27–35. https://doi.org/10.1016/S1473-3099(12)70264-5.

Article  PubMed  Google Scholar 

Maranchick NF, Alshaer MH, Smith AGC, Avaliani T, Gujabidze M, Bakuradze T, Sabanadze S, Avaliani Z, Kipiani M, Peloquin CA, Kempker RR. Cerebrospinal fluid concentrations of fluoroquinolones and carbapenems in tuberculosis meningitis. Front Pharmacol. 2022;12(13):1048653. https://doi.org/10.3389/fphar.2022.1048653.

Article  CAS  Google Scholar 

Heemskerk AD, Nguyen MTH, Dang HTM, Vinh Nguyen CV, Nguyen LH, Do TDA, Nguyen TTT, Wolbers M, Day J, Le TTP, Nguyen BD, Caws M, Thwaites GE. Clinical outcomes of patients with drug-resistant tuberculous meningitis treated with an intensified antituberculosis regimen. Clin Infect Dis. 2017;65(1):20–8. https://doi.org/10.1093/cid/cix230.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evans EE, Avaliani T, Gujabidze M, et al. Long term outcomes of patients with tuberculous meningitis: the impact of drug resistance. PLoS One. 2022;17(6): e0270201. https://doi.org/10.1371/journal.pone.0270201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khoshnood S, Goudarzi M, Taki E, et al. Bedaquiline: current status and future perspectives. J Glob Antimicrob Res. 2021;25:48–59. https://doi.org/10.1016/j.jgar.2021.02.017.

Article  CAS  Google Scholar 

Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307(5707):223–7. https://doi.org/10.1126/science.1106753.

Article  CAS  PubMed  Google Scholar 

World Health Organization. Consolidated operational guidelines on handbook tuberculosis. 2020. https://www.who.int/publications/i/item/9789240063129.

Akkerman OW, Odish OFF, Bolhuis MS, et al. Pharmacokinetics of bedaquiline in cerebrospinal fluid and serum in multidrug-resistant tuberculous meningitis. Clin Infect Dis. 2015;62(4):523–4. https://doi.org/10.1093/cid/civ921.

Article  PubMed  Google Scholar 

Upton CM, Steele CI, Maartens G, Diacon AH, Wiesner L, Dooley KE. Pharmacokinetics of bedaquiline in cerebrospinal fluid (CSF) in patients with pulmonary tuberculosis (TB). J Antimicrob Chemother. 2022;77(6):1720–4. https://doi.org/10.1093/jac/dkac067.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ordonez AA, Carroll LS, Abhishek S, et al. Radiosynthesis and PET bioimaging of 76Br-bedaquiline in a murine model of tuberculosis. ACS Infect Dis. 2019;5(12):1996–2002. https://doi.org/10.1021/acsinfecdis.9b00207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pamreddy A, Baijnath S, Naicker T, et al. Bedaquiline has potential for targeting tuberculosis reservoirs in the central nervous system. RSC Adv. 2018;8(22):11902–7. https://doi.org/10.1039/c8ra00984h.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mota F, Ruiz-Bedoya CA, Tucker EW, et al. Dynamic 18F-Pretomanid PET imaging in animal models of TB meningitis and human studies. Nat Commun. 2022;13(1):7974. https://doi.org/10.1038/s41467-022-35730-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tasneen R, Betoudji F, Tyagi S, et al. Contribution of oxazolidinones to the efficacy of novel regimens containing bedaquiline and pretomanid in a mouse model of tuberculosis. Antimicrob Agents Chemother. 2016;60(1):270–7. https://doi.org/10.1128/AAC.01691-15.

Article  CAS  PubMed  Google Scholar 

Food and Drug Administration (FDA). FDA Briefing Document Pretomanid Tablet, 200 mg Meeting of the Antimicrobial Drugs Advisory Committee (AMDAC). Published online 2019. https://www.fda.gov/media/127592/download.

Smith AGC, Gujabidze M, Avaliani T, et al. Clinical outcomes among patients with tuberculous meningitis receiving intensified treatment regimens. Int J Tuberc Lung Dis. 2021;25(8):632–9. https://doi.org/10.5588/ijtld.21.0159.

Article  CAS  PubMed  Google Scholar 

Diacon AH, Dawson R, Von Groote-Bidlingmaier F, et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline. Am J Respir Critical Care Med. 2015;191(8):943–53. https://doi.org/10.1164/rccm.201410-1801OC.

Article  CAS  Google Scholar 

Kuepfer L, Niederalt C, Wendl T, et al. Applied concepts in PBPK modeling: how to build a PBPK/PD model. CPT Pharmacometrics Syst Pharmacol. 2016;5(10):516–31. https://doi.org/10.1002/psp4.12134.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Willmann S, Höhn K, Edginton A, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34(3):401–31. https://doi.org/10.1007/s10928-007-9053-5.

Article  PubMed  Google Scholar 

Willmann S, Schmitt W, Keldenich J, Dressman JB. A physiologic model for simulating gastrointestinal flow and drug absorption in rats. Pharm Res. 2003;20(11):1766–71. https://doi.org/10.1023/B:PHAM.0000003373.72652.c0.

Article  CAS  PubMed  Google Scholar 

Gaohua L, Wedagedera J, Small BG, et al. Development of a multicompartment permeability-limited lung PBPK model and its application in predicting pulmonary pharmacokinetics of antituberculosis drugs. CPT Pharmacometrics Syst Pharmacol. 2015;4(10):605–13. https://doi.org/10.1002/psp4.12034.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Heeswijk RPG, Dannemann B, Hoetelmans RMW. Bedaquiline: a review of human pharmacokinetics and drug–drug interactions. J Antimicrob Chemother. 2014;69(9):2310–8. https://doi.org/10.1093/jac/dku171.

Article  CAS  PubMed  Google Scholar 

Svensson EM, Dosne AG, Karlsson MO. Population pharmacokinetics of bedaquiline and metabolite m2 in patients with drug-resistant tuberculosis: the effect of time-varying weight and albumin. CPT Pharmacometrics Syst Pharmacol. 2016;5(12):682–91. https://doi.org/10.1002/psp4.12147.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McLeay SC, Vis P, Van Heeswijk RPG, Green B. Population pharmacokinetics of bedaquiline (TMC207), a novel antituberculosis drug. Antimicrob Agents Chemother. 2014;58(9):5315–24. https://doi.org/10.1128/AAC.01418-13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mehta K, Guo T, van der Graaf PH, van Hasselt JGC. Predictions of bedaquiline and pretomanid target attainment in lung lesions of tuberculosis patients using translational minimal physiologically based pharmacokinetic modeling. Clin Pharmacokinet. 2023;62(3):519–32. https://doi.org/10.1007/s40262-023-01217-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmitt W. General approach for the calculation of tissue to plasma partition coefficients. Toxicol In Vitro. 2008;22(2):457–67. https://doi.org/10.1016/j.tiv.2007.09.010.

Article  CAS  PubMed  Google Scholar 

Cordes H, Rapp H. Gene expression databases for physiologically based pharmacokinetic modeling of humans and animal species. CPT Pharmacometrics Syst Pharmacol. 2023;12(3):311–9. https://doi.org/10.1002/psp4.12904.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu K, Li F, Lu J, et al. Bedaquiline metabolism: enzymes and novel metabolites. Drug Metab Dispos. 2014;42(5):863–6. https://doi.org/10.1124/dmd.113.056119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto Y, Välitalo PA, van den Berg DJ, et al. A generic multi-compartmental CNS distribution model structure for 9 drugs allows prediction of human brain target site concentrations. Pharm Res. 2017;34(2):333–51. https://doi.org/10.1007/s11095-016-2065-3.

Article  CAS  PubMed  Google Scholar 

Gaohua L, Neuhoff S, Johnson TN, Rostami-Hodjegan A, Jamei M. Development of a permeability-limited model of the human brain and cerebrospinal fluid (CSF) to integrate known physiological and biological knowledge: estimating time varying CSF drug concentrations and their variability using in vitro data. Drug Metab Pharmacokinet. 2016;31(3):224–33. https://doi.org/10.1016/j.dmpk.2016.03.005.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif