Toward Genetic Testing of Rivaroxaban? Insights from a Systematic Review on the Role of Genetic Polymorphism in Rivaroxaban Therapy

Chen A, Stecker E, Warden BA. Direct oral anticoagulant use: a practical guide to common clinical challenges. J Am Heart Assoc. 2020;9(13):e17559.

Article  Google Scholar 

Haas S. Rivaroxaban – an oral, direct Factor Xa inhibitor: lessons from a broad clinical study programme. Eur J Haematol. 2009;82(5):339–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

US FDA. XARELTO (Rivaroxaban): Summary of Product Characteristics. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/022406s015lbl.pdf. Accessed 10 Jun 2023.

Chaudhary R, Sharma T, Garg J, et al. Direct oral anticoagulants: a review on the current role and scope of reversal agents. J Thromb Thrombolysis. 2020;49(2):271–86.

Article  PubMed  Google Scholar 

Chan N, Sobieraj-Teague M, Eikelboom JW. Direct oral anticoagulants: evidence and unresolved issues. Lancet. 2020;396(10264):1767–76.

Article  CAS  PubMed  Google Scholar 

Douxfils J, Ageno W, Samama CM, et al. Laboratory testing in patients treated with direct oral anticoagulants: a practical guide for clinicians. J Thromb Haemost. 2018;16(2):209–19.

Article  CAS  PubMed  Google Scholar 

Konicki R, Weiner D, Herbert PJ, et al. Rivaroxaban precision dosing strategy for real-world atrial fibrillation patients. Clin Transl Sci. 2020;13(4):777–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seiffge DJ, Traenka C, Polymeris A, et al. Feasibility of rapid measurement of Rivaroxaban plasma levels in patients with acute stroke. J Thromb Thrombolysis. 2017;43(1):112–6.

Article  CAS  PubMed  Google Scholar 

Miklic M, Mavri A, Vene N, et al. Intra- and inter- individual rivaroxaban concentrations and potential bleeding risk in patients with atrial fibrillation. Eur J Clin Pharmacol. 2019;75(8):1069–75.

Article  CAS  PubMed  Google Scholar 

Yi YH, Gong S, Gong TL, et al. New oral anticoagulants for venous thromboembolism prophylaxis in total hip and knee arthroplasty: a systematic review and network meta-analysis. Front Pharmacol. 2021;12: 775126.

Article  CAS  PubMed  Google Scholar 

Kanuri SH, Kreutz RP. Pharmacogenomics of novel direct oral anticoagulants: newly identified genes and genetic variants. J Pers Med. 2019;9(1):7.

Article  PubMed  PubMed Central  Google Scholar 

Raymond J, Imbert L, Cousin T, et al. Pharmacogenetics of direct oral anticoagulants: a systematic review. J Pers Med. 2021;11(1):37.

Article  PubMed  PubMed Central  Google Scholar 

Sychev DA, Sokolov AV, Reshetko OV, et al. Influence of ABCB1, CYP3A5 and CYP3A4 gene polymorphisms on prothrombin time and the residual equilibrium concentration of rivaroxaban in patients with non-valvular atrial fibrillation in real clinical practice. Pharmacogent Genom. 2022;32(9):301–7.

Article  CAS  Google Scholar 

Sychev D, Ostroumova O, Cherniaeva M, et al. The Influence of ABCB1 (rs1045642 and rs4148738) Gene Polymorphisms on Rivaroxaban Pharmacokinetics in Patients Aged 80 Years and Older with Nonvalvular Atrial Fibrillation. High Blood Pressure & Cardiovascular Prevention. 2022;29(5):469–80.

Article  CAS  Google Scholar 

Lenoir C, Terrier J, Gloor Y, et al. Impact of the genotype and phenotype of CYP3A and P-gp on the apixaban and rivaroxaban exposure in a real-world setting. J Pers Med. 2022;12(4):526.

Article  PubMed  PubMed Central  Google Scholar 

Campbell M, McKenzie JE, Sowden A, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ. 2020;368: l6890.

Article  PubMed  PubMed Central  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.

Article  PubMed  PubMed Central  Google Scholar 

Pignatelli P, Pastori D, Bartimoccia S, et al. Anti Xa oral anticoagulants inhibit in vivo platelet activation by modulating glycoprotein VI shedding. Pharmacol Res. 2016;113(Pt A):484–9.

Article  CAS  PubMed  Google Scholar 

Petzold T, Thienel M, Dannenberg L, et al. Rivaroxaban reduces arterial thrombosis by inhibition of FXa-driven platelet activation via protease activated receptor-1. Circ Res. 2020;126(4):486–500.

Article  CAS  PubMed  Google Scholar 

Trikalinos TA, Salanti G, Khoury MJ, et al. Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol. 2006;163(4):300–9.

Article  PubMed  Google Scholar 

Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2011. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm. Accessed 10 Jun 2023.

Lo CK, Mertz D, Loeb M. Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. Bmc Med Res Methodol. 2014;14:45.

Article  PubMed  PubMed Central  Google Scholar 

Sedgwick P. Meta-analyses: what is heterogeneity? BMJ. 2015;350: h1435.

Article  PubMed  Google Scholar 

Zhang D, Qin W, Du W, et al. Effect of ABCB1 gene variants on rivaroxaban pharmacokinetic and hemorrhage events occurring in patients with non-valvular atrial fibrillation. Biopharm Drug Dispos. 2022;43(4):163–71.

Article  PubMed  Google Scholar 

Zhang F, Chen X, Wu T, et al. Population pharmacokinetics of rivaroxaban in chinese patients with non-valvular atrial fibrillation: a prospective multicenter study. Clin Pharmacokinet. 2022;61(6):881–93.

Article  CAS  PubMed  Google Scholar 

Rytkin E, Bure IV, Bochkov PO, et al. MicroRNAs as novel biomarkers for rivaroxaban therapeutic drug monitoring. Drug Metab Pers Ther. 2022;37(1):41–6.

Article  CAS  Google Scholar 

Nakagawa J, Kinjo T, Iizuka M, et al. Impact of gene polymorphisms in drug-metabolizing enzymes and transporters on trough concentrations of rivaroxaban in patients with atrial fibrillation. Basic Clin Pharmacol. 2021;128(2):297–304.

Article  CAS  Google Scholar 

Wang Y, Chen M, Chen H, et al. Influence of ABCB1 gene polymorphism on rivaroxaban blood concentration and hemorrhagic events in patients with atrial fibrillation. Front Pharmacol. 2021;12: 639854.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sychev DA, Baturina OA, Mirzaev KB, et al. CYP2C19*17 may increase the risk of death among patients with an acute coronary syndrome and non-valvular atrial fibrillation who receive clopidogrel and rivaroxaban. Pharmgenomics Pers Med. 2020;13:29–37.

CAS  PubMed  PubMed Central  Google Scholar 

Xiang J. Correlation study of ABCB1 and CES1 gene polymorphisms with rivaroxaban/dabigatran plasma concentration and drug safety in patients with atrial fibrillation. MS thesis, ChongQing Medical University; 2020.

Cosmi B, Salomone L, Cini M, et al. The effect of rs4148738 polymorphism of ABCB1 on the plasma concentrations of direct oral anticoagulants and bleeding an thromboembolic complications. Res Pract Thromb Haemost. 2020;4(Suppl 1):1250–1.

Google Scholar 

Sychev D, Minnigulov R, Bochkov P, et al. Effect of CYP3A4, CYP3A5, ABCB1 gene polymorphisms on rivaroxaban pharmacokinetics in patients undergoing total hip and knee replacement surgery. High Blood Press Cardiovasc Prev. 2019;26(5):413–20.

Article  CAS  PubMed  Google Scholar 

Mueck W, Stampfuss J, Kubitza D, et al. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet. 2014;53(1):1–16.

Article  CAS  PubMed  Google Scholar 

Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41.

Article  CAS  PubMed  Google Scholar 

Weinz C, Schwarz T, Kubitza D, et al. Metabolism and excretion of rivaroxaban, an oral, direct factor Xa inhibitor, in rats, dogs, and humans. Drug Metab Dispos. 2009;37(5):1056–64.

Article  CAS  PubMed  Google Scholar 

Gnoth MJ, Buetehorn U, Muenster U, et al. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372–80.

Article  CAS  PubMed  Google Scholar 

Mueck W, Kubitza D, Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol. 2013;76(3):455–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genom. 2011;21(3):152–61.

Article  CAS  Google Scholar 

Cusatis G, Sparreboom A. Pharmacogenomic importance of ABCG2. Pharmacogenomics. 2008;9(8):1005–9.

Article  CAS  PubMed  Google Scholar 

Gong IY, Mansell SE, Kim RB. Absence of both MDR1 (ABCB1) and breast cancer resistance protein (ABCG2) transporters significantly alters rivaroxaban disposition and central nervous system entry. Basic Clin Pharmacol Toxicol. 2013;112(3):164–70.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif