Acrylamide, Applied During Pregnancy and Postpartum Period in Offspring Rats, Significantly Disrupted Myelination by Decreasing the Levels of Myelin-Related Proteins: MBP, MAG, and MOG

Friedman M (2003) Chemistry, biochemistry, and safety of acrylamide: a review. J Agric Food Chem 50:4504–4526. https://doi.org/10.1021/JF030204

Article  Google Scholar 

Üremiş MM, Gültekin S, Üremiş N, Şafak T, Çiğremiş Y, Gül M, Aydin M, Zayman E, Türköz Y (2023) Protective role of vitamin E against acrylamide-induced testicular toxicity from pregnancy to adulthood: insights into oxidative stress and aromatase regulation. Naunyn-Schmiedeberg’s Arch Pharmacol 2023:1–13. https://doi.org/10.1007/S00210-023-02638-8

Article  Google Scholar 

Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006. https://doi.org/10.1021/JF020302F/ASSET/IMAGES/LARGE/JF020302FF00006.JPEG

Article  CAS  PubMed  Google Scholar 

Benford D, Ceccatelli S, Cottrill B, DiNovi M, Dogliotti E, Edler L et al (2015) Scientific opinion on acrylamide in food. EFSA J 13:4104. https://doi.org/10.2903/J.EFSA.2015.4104

Article  Google Scholar 

Aldawood N, Alrezaki A, Alanazi S, Amor N, Alwasel S, Sirotkin A et al (2020) Acrylamide impairs ovarian function by promoting apoptosis and affecting reproductive hormone release, steroidogenesis and autophagy-related genes: an in vivo study. Ecotoxicol Environ Saf 197:1–10. https://doi.org/10.1016/J.ECOENV.2020.110595

Article  Google Scholar 

Senthilkumar S, Raveendran R, Madhusoodanan S, Sundar M, Shankar SS, Sharma S et al (2020) Developmental and behavioural toxicity induced by acrylamide exposure and amelioration using phytochemicals in Drosophila melanogaster. J Hazard Mater 394:1–12. https://doi.org/10.1016/J.JHAZMAT.2020.122533

Article  Google Scholar 

Gwinn WM, Auerbach SS, Parham F, Stout MD, Waidyanatha S, Mutlu E et al (2020) Evaluation of 5-day in vivo rat liver and kidney with high-throughput transcriptomics for estimating benchmark doses of apical outcomes. Toxicol Sci 176:343–354. https://doi.org/10.1093/TOXSCI/KFAA081

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao DB, Jortner BS, Sills RC (2014) Animal models of peripheral neuropathy due to environmental toxicants. ILAR J 54:315–323. https://doi.org/10.1093/ILAR/ILT058

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komoike Y, Matsuoka M (2019) In vitro and in vivo studies of oxidative stress responses against acrylamide toxicity in zebrafish. J Hazard Mater 365:430–439. https://doi.org/10.1016/J.JHAZMAT.2018.11.023

Article  CAS  PubMed  Google Scholar 

Sui X, Yang J, Zhang G, Yuan XF, Li WH, Long JH et al (2020) NLRP3 inflammasome inhibition attenuates subacute neurotoxicity induced by acrylamide in vitro and in vivo. Toxicology 432:1–12. https://doi.org/10.1016/J.TOX.2020.152392

Article  Google Scholar 

Mulloy KB (1996) Two case reports of neurological disease in coal mine preparation plant workers. Am J Ind Med 30:56–61. https://doi.org/10.1002/(SICI)1097-0274(199607)30:1%3c56::AID-AJIM9%3e3.0.CO;2-Q

Article  CAS  PubMed  Google Scholar 

Sörgel F, Weissenbacher R, Kinzig-Schippers M, Hofmann A, Illauer M, Skott A et al (2002) Acrylamide: increased concentrations in homemade food and first evidence of its variable absorption from food, variable metabolism and placental and breast milk transfer in humans. Chemotherapy 48:267–274. https://doi.org/10.1159/000069715

Article  CAS  PubMed  Google Scholar 

Hułas-Stasiak M, Dobrowolski P, Tomaszewska E (2016) Maternal acrylamide and effects on offspring. Acrylamide in food: analysis, content and potential health effects, vol 1. Academic Press, pp 93–107

Chapter  Google Scholar 

Miron VE, Franklin RJM (2014) Macrophages and CNS remyelination. J Neurochem 130:165–171. https://doi.org/10.1111/jnc.12705

Article  CAS  PubMed  Google Scholar 

Osorio-Querejeta I, Alberro A, Muñoz-Culla M, Mäger I, Otaegui D (2018) Therapeutic potential of extracellular vesicles for demyelinating diseases; challenges and opportunities. Front Mol Neurosci 11:1–8. https://doi.org/10.3389/fnmol.2018.00434

Article  CAS  Google Scholar 

Sahel A, Ortiz FC, Kerninon C, Maldonado PP, Angulo MC, Nait-Oumesmar B (2015) Alteration of synaptic connectivity of oligodendrocyte precursor cells following demyelination. Front Cell Neurosci 9:1–12. https://doi.org/10.3389/fncel.2015.00077

Article  CAS  Google Scholar 

Lopachin RM, Lehning EJ, Castiglia CM, Saubermann AJ (1993) Acrylamide disrupts elemental composition and water content of rat tibial nerve: III recovery. Toxicol Appl Pharmacol 122:54–60. https://doi.org/10.1006/TAAP.1993.1171

Article  CAS  PubMed  Google Scholar 

Al-Gholam MA, Nooh HZ, El-Mehi AE, El-Barbary AEM, El Fokar AZ (2016) Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study. Anat Cell Biol 49:34–49. https://doi.org/10.5115/ACB.2016.49.1.34

Article  PubMed  PubMed Central  Google Scholar 

Tabeshpour J, Mehri S, Abnous K, Hosseinzadeh H (2019) Neuroprotective effects of thymoquinone in acrylamide-induced peripheral nervous system toxicity through MAPKinase and apoptosis pathways in rat. Neurochem Res 44:1101–1112. https://doi.org/10.1007/S11064-019-02741-4

Article  CAS  PubMed  Google Scholar 

Leonard SW, Paterson E, Atkinson JK, Ramakrishnan R, Cross CE, Traber MG (2005) Studies in humans using deuterium-labeled α- and γ-tocopherols demonstrate faster plasma γ-tocopherol disappearance and greater γ-metabolite production. Free Radic Biol Med 38:857–866. https://doi.org/10.1016/J.FREERADBIOMED.2004.12.001

Article  CAS  PubMed  Google Scholar 

Traber MG, Sokol RJ, Kohlschutter A, Yokota T, Muller DPR, Dufour R et al (1993) Impaired discrimination between stereoisomers of alpha-tocopherol in patients with familial isolated vitamin E deficiency. J Lipid Res 34:201–210. https://doi.org/10.1016/S0022-2275(20)40747-3

Article  CAS  PubMed  Google Scholar 

Gohil K, Vasu VT, Cross CE (2010) Dietary alpha-tocopherol and neuromuscular health: search for optimal dose and molecular mechanisms continues! Mol Nutr Food Res 54:693–709. https://doi.org/10.1002/MNFR.200900575

Article  CAS  PubMed  Google Scholar 

Nishida Y, Ito S, Ohtsuki S, Yamamoto N, Takahashi T, Iwata N et al (2009) Depletion of vitamin E increases amyloid β accumulation by decreasing its clearances from brain and blood in a mouse model of Alzheimer disease. J Biol Chem 284:33400–33408. https://doi.org/10.1074/JBC.M109.054056

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leonarduzzi G, Sottero B, Poli G (2010) Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited. Pharmacol Ther 128:336–374. https://doi.org/10.1016/J.PHARMTHERA.2010.08.003

Article  CAS  PubMed  Google Scholar 

Cao L, Chen R, Xu J, Lin Y, Wang R, Chi Z (2009) Vitamin E inhibits activated chaperone-mediated autophagy in rats with status epilepticus. Neuroscience 161:73–77. https://doi.org/10.1016/J.NEUROSCIENCE.2009.02.059

Article  CAS  PubMed  Google Scholar 

Takahashi M, Shibutani M, Inoue K, Fujimoto H, Hirose M, Nishikawa A (2008) Pathological assessment of the nervous and male reproductive systems of rat offspring exposed maternally to acrylamide during the gestation and lactation periods—a preliminary study. J Toxicol Sci 33:11–24. https://doi.org/10.2131/JTS.33.11

Article  CAS  PubMed  Google Scholar 

Takahashi M, Shibutani M, Nakahigashi J, Sakaguchi N, Inoue K, Morikawa T et al (2009) Limited lactational transfer of acrylamide to rat offspring on maternal oral administration during the gestation and lactation periods. Arch Toxicol 83:785–793. https://doi.org/10.1007/S00204-009-0418-Y

Article  CAS  PubMed  Google Scholar 

Manjanatha MG, Aidoo A, Shelton SD, Bishop ME, McDaniel LP, Lyn-Cook LE et al (2006) Genotoxicity of acrylamide and its metabolite glycidamide administered in drinking water to male and female Big Blue mice. Environ Mol Mutagen 47:6–17. https://doi.org/10.1002/EM.20157

Article  CAS  PubMed  Google Scholar 

Amazan D, Rey AI, Fernández E, López-Bote CJ (2012) Natural vitamin E (d-α-tocopherol) supplementation in drinking water prevents oxidative stress in weaned piglets. Livest Sci 145:55–62. https://doi.org/10.1016/J.LIVSCI.2011.12.022

Article  Google Scholar 

Corino C, Pastorelli G, Pantaleo L, Oriani G, Salvatori G (1999) Improvement of color and lipid stability of rabbit meat by dietary supplementation with vitamin E. Meat Sci 52:285–289. https://doi.org/10.1016/S0309-1740(99)00004-2

Article  CAS  PubMed  Google Scholar 

Hughes RN, Collins MA (2010) Enhanced habituation and decreased anxiety by environmental enrichment and possible attenuation of these effects by chronic alpha-tocopherol (vitamin E) in aging male and female rats. Pharmacol Biochem Behav 94:534–542. https://doi.org/10.1016/J.PBB.2009.11.008

Article  CAS  PubMed  Google Scholar 

Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60. https://doi.org/10.1016/0165-0270(84)90007-4

Article  CAS  PubMed  Google Scholar 

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12. https://doi.org/10.1186/GB-2002-3-7-RESEARCH0034/COMMENTS

Article  Google Scholar 

Calvo AC, Moreno-Igoa M, Manzano R, Ordovás L, Yagüe G, Oliván S et al (2008) Determination of protein and RNA expression levels of common housekeeping genes in a mouse model of neurodegeneration. Proteomics 8:4338–4343. https://doi.org/10.1002/PMIC.200701091

Article 

留言 (0)

沒有登入
gif