sCD163, sCD28, sCD80, and sCTLA-4 as soluble marker candidates for detecting immunosenescence

Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908(1):244–54.

Article  CAS  PubMed  Google Scholar 

Pawelec G, Larbi A, Derhovanessian E. Senescence of the human immune system. J Comp Pathol. 2010;142:39–S44.

Article  Google Scholar 

Wikby A, Strindhall J, Johansson B. The immune risk profile and associated parameters in late life: lessons from the OCTO and NONA longitudinal studies. Handbook on Immunosenescence: Springer; 2009. pp. 3–28.

Google Scholar 

Chen X, Liu Q, Xiang AP. CD8 + CD28-T cells: not only age-related cells but a subset of regulatory T cells. Cell Mol Immunol. 2018;15(8):734–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Derhovanessian E, Maier AB, Beck R, Jahn G, Hähnel K, Slagboom PE, et al. Hallmark features of immunosenescence are absent in familial longevity. J Immunol. 2010;185(8):4618–24.

Article  CAS  PubMed  Google Scholar 

Xydonas S, Parissis J, Lioni L, Kapsimali V, Psarra E, Farmakis D, et al. Immunosenescence in patients with chronic systolic Heart Failure. J Cardiovasc Med. 2016;17(8):624–30.

Article  CAS  Google Scholar 

Sainz T, Serrano-Villar S, Díaz L, Tomé MIG, Gurbindo MD, de José MI, et al. The CD4/CD8 ratio as a marker T-cell activation, senescence and activation/exhaustion in treated HIV-infected children and young adults. Aids. 2013;27(9):1513–6.

Article  CAS  PubMed  Google Scholar 

Muller GC, Gottlieb MGV, Correa BL, Gomes Filho I, Moresco RN, Bauer ME. The inverted CD4: CD8 ratio is associated with gender-related changes in oxidative stress during aging. Cell Immunol. 2015;296(2):149–54.

Article  CAS  PubMed  Google Scholar 

Mou D, Espinosa J, Lo DJ, Kirk AD. CD28 negative T cells: is their loss our gain? Am J Transplant. 2014;14(11):2460–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yadav AK, Banerjee D, Lal A, Jha V. Vitamin D deficiency, CD4 + CD28null cells and accelerated Atherosclerosis in chronic Kidney Disease. Nephrology. 2012;17(6):575–81.

Article  CAS  PubMed  Google Scholar 

Téo FH, de Oliveira RTD, Mamoni RL, Ferreira MCS, Nadruz W Jr, Coelho OR, et al. Characterization of CD4 + CD28null T cells in patients with coronary artery Disease and individuals with risk factors for Atherosclerosis. Cell Immunol. 2013;281(1):11–9.

Article  PubMed  Google Scholar 

Montoya-Ortiz G. Immunosenescence, aging, and systemic lupus erythematous. Autoimmune diseases. 2013;2013.

van den Laurens L, Patrick Sims G, van Adrianus Gijsbert J. Dorothea Elisabeth Fritsch-Stork R. Aging and systemic lupus erythematosus-immunosenescence and beyond. Curr Aging Sci. 2015;8(2):158–77.

Article  Google Scholar 

Lang PO, Govind S, Aspinall R. Reversing T cell immunosenescence: why, who, and how. Age. 2013;35(3):609–20.

Article  PubMed  Google Scholar 

Koch S, Solana R, Rosa OD, Pawelec G. Human cytomegalovirus Infection and T cell immunosenescence: a mini review. Mech Ageing Dev. 2006;127(6):538–43.

Article  CAS  PubMed  Google Scholar 

Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A. Cytomegalovirus and human immunosenescence. Rev Med Virol. 2009;19(1):47–56.

Article  CAS  PubMed  Google Scholar 

Rasmussen LJH, Caspi A, Ambler A, Danese A, Elliott M, Eugen-Olsen J, et al. Association between elevated suPAR, a new biomarker of inflammation, and accelerated aging. The Journals of Gerontology: Series A. 2021;76(2):318–27.

CAS  Google Scholar 

Del Giudice M, Gangestad SW, Rethinking. IL-6 and CRP: why they are more than inflammatory biomarkers, and why it matters. Brain Behav Immun. 2018;70:61–75.

Article  PubMed  Google Scholar 

Zelová H, Hošek J. TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm Res. 2013;62:641–51.

Article  PubMed  Google Scholar 

Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-γ): exploring its implications in infectious Diseases. Biomol Concepts. 2018;9(1):64–79.

Article  CAS  PubMed  Google Scholar 

Gaini S, Pedersen S, Koldkjær O, Pedersen C, Moestrup S, Møller H. New immunological serum markers in bacteraemia: anti-inflammatory soluble CD163, but not proinflammatory high mobility group-box 1 protein, is related to prognosis. Clin Experimental Immunol. 2008;151(3):423–31.

Article  CAS  Google Scholar 

Møller H, Aerts H, Grøbæk H, Peterslund N, Petersen PH, Hornung N, et al. Soluble CD163: a marker molecule for monocyte/macrophage activity in Disease. Scand J Clin Lab Investig. 2002;62(7):29–33.

Article  Google Scholar 

Møller HJ. Soluble CD163. Scand J Clin Lab Investig. 2012;72(1):1–13.

Article  Google Scholar 

Horn LA, Long TM, Atkinson R, Clements V, Ostrand-Rosenberg S. Soluble CD80 protein delays Tumor growth and promotes tumor-infiltrating lymphocytes. Cancer Immunol Res. 2018;6(1):59–68.

Article  CAS  PubMed  Google Scholar 

Kakoulidou M, Giscombe R, Zhao X, Lefvert A, Wang X. Human soluble CD80 is generated by alternative splicing, and recombinant soluble CD80 binds to CD28 and CD152 influencing T-cell activation. Scand J Immunol. 2007;66(5):529–37.

Article  CAS  PubMed  Google Scholar 

Xia F, Qian C-R, Xun Z, Hamon Y, Sartre A-M, Formisano A, et al. TCR and CD28 concomitant stimulation elicits a distinctive calcium response in naive T cells. Front Immunol. 2018;9:2864.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Costantini A, Viola N, Berretta A, Galeazzi R, Matacchione G, Sabbatinelli J, et al. Age-related M1/M2 phenotype changes in circulating monocytes from healthy/unhealthy individuals. Aging. 2018;10(6):1268.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM, et al. Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front Immunol. 2019;10:2247.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santoro A, Bientinesi E, Monti D. Immunosenescence and inflammaging in the aging process: age-related Diseases or longevity? Ageing Res Rev. 2021;71:101422.

Article  CAS  PubMed  Google Scholar 

Nielsen MC, Andersen MN, Rittig N, Rødgaard-Hansen S, Grønbæk H, Moestrup SK, et al. The macrophage-related biomarkers sCD163 and sCD206 are released by different shedding mechanisms. J Leukoc Biol. 2019;106(5):1129–38.

Article  CAS  PubMed  Google Scholar 

Sun Z, Yi L, Tao H, Huang J, Jin Z, Xiao Y, et al. Enhancement of soluble CD28 levels in the serum of Graves’ Disease. Central-European J Immunol. 2014;39(2):216.

Article  Google Scholar 

Matsuyama Y, Asanuma K, Yoshida K, Hagi T, Iino T, Nakamura T, et al. The role of soluble CD80 in patients with soft tissue tumors. J Orthop Surg Res. 2022;17(1):1–9.

Article  Google Scholar 

Khanolkar RC, Zhang C, Al-Fatyan F, Lawson L, Depasquale I, Meredith FM, et al. TGFβ2 induces the Soluble Isoform of CTLA-4–Implications for CTLA-4 based checkpoint inhibitor antibodies in malignant Melanoma. Front Immunol. 2022;12:5687.

Article  Google Scholar 

Matsushita N, Kashiwagi M, Wait R, Nagayoshi R, Nakamura M, Matsuda T, et al. Elevated levels of soluble CD163 in sera and fluids from rheumatoid arthritis patients and inhibition of the shedding of CD163 by TIMP-3. Clin Experimental Immunol. 2002;130(1):156–61.

Article  CAS  Google Scholar 

Davis BH, Zarev PV. Human monocyte CD163 expression inversely correlates with soluble CD163 plasma levels. Cytometry Part B: Clinical Cytometry: The Journal of the International Society for Analytical Cytology. 2005;63(1):16–22.

Article  Google Scholar 

Onofre G, Kolácková M, Jankovicová K, Krejsek J. Scavenger receptor CD163 and its biological functions. Acta Medica (Hradec Kralove). 2009;52(2):57–61.

Article  CAS  PubMed  Google Scholar 

Etzerodt A, Moestrup SK. CD163 and inflammation: biological, diagnostic, and therapeutic aspects. Antioxid Redox Signal. 2013;18(17):2352–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weaver LK, Hintz-Goldstein KA, Pioli PA, Wardwell K, Qureshi N, Vogel SN, et al. Pivotal advance: activation of cell surface toll‐like receptors causes shedding of the hemoglobin scavenger receptor CD163. J Leukoc Biol. 2006;80(1):26–35.

Article  CAS  PubMed  Google Scholar 

Moreno JA, Ortega-Gomez A, Delbosc S, Beaufort N, Sorbets E, Louedec L, et al. In vitro and in vivo evidence for the role of elastase shedding of CD163 in human atherothrombosis. Eur Heart J. 2012;33(2):252–63.

Article  CAS  PubMed  Google Scholar 

Nielsen MC, Andersen MN, Rittig N, Rødgaard-Hansen S, Grønbæk H, Moestrup SK, et al. The macrophage‐related biomarkers sCD163 and sCD206 are released by different shedding mechanisms. J Leukoc Biol. 2019;106(5):1129–38.

留言 (0)

沒有登入
gif