Accelarated immune ageing is associated with COVID-19 disease severity

Long QX, Tang XJ, Shi QL, Li Q, Deng H-J, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARS-CoV2 infections. Nat Med. 2020;26(8):1200–4. https://doi.org/10.1038/s41591-020-0965-6.

Article  CAS  PubMed  Google Scholar 

Starke KR, Reissig D, Petereit-Haack G, Schmauder S, Nienhaus A, Seidler A. The isolated effect of age on the risk of COVID-19 severe outcomes: a systematic review with meta-analysis. BMJ Glob Health. 2021;6(12):e006434. https://doi.org/10.1136/bmjgh-2021-006434.

Article  Google Scholar 

Fleming DM, Elliot AJ. The impact of Influenza on the health and health care utilisation of elderly people. Vaccine. 2005;23:S1–9. https://doi.org/10.1016/j.vaccine.2005.04.018.

Article  PubMed  Google Scholar 

The PHOSP-COVID Collaborative Group. Clinical characteristics with inflammation profiling of Long-COVID and association with one-year recovery following hospitalisation in the UK: a prospective observational study. Lancet Resp Med. 2022;10(8):761–75. https://doi.org/10.1016/s2213-2600(22)00127-8.

Article  CAS  Google Scholar 

Richter AG, Shields AM, Karim A, Birch D, Faustini SE, Steadman L, et al. Establishing the prevalence of common tissue-specific autoantibodies following severe acute respiratory syndrome coronavirus 2 infection. Clin Exp Immunol. 2021;205(2):99–105. https://doi.org/10.1111/cei.13623.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duggal NA. Reversing the immune ageing lock: lifestyle modifications and pharmacological interventions. Biogerontol. 2018;19(6):481–96. https://doi.org/10.1007/s10522-018-9771-7.

Article  Google Scholar 

Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino C, et al. Immunosenescence and its hallmarks: How to oppose aging strategically? A review of potential options for therapeutic intervention. Front Immunol. 2019;25:2247. https://doi.org/10.3389/fimmu.2019.02247.

Article  CAS  Google Scholar 

Hazeldine J, Hampson P, Lord JM. Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell. 2012;11(5):751–9. https://doi.org/10.1111/j.1474-9726.2012.00839.x.

Article  CAS  PubMed  Google Scholar 

Mitchell WA, Lang PO, Aspinall R. Tracing thymic output in older individuals. Clin Exp Immunol. 2010;161(3):497–503. https://doi.org/10.1111/j.1365-2249.2010.04209.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Mitri D, Azevedo SM, Henson V, Libri V, Riddell NE, Macauley R, et al. Reversible senescence in human CD4+CD45RA+CD27- memory T cells. J Immunol. 2011;187(5):2093–100. https://doi.org/10.4049/jimmunol.1100978.

Article  PubMed  Google Scholar 

Ouyang X, Yang Z, Zhang P, Arnaboldi P, Lu G, Li Q, et al. Potentiation of Th17 cytokines in aging process contributes to the development of colitis. Cell Immunol. 2011;266(2):208–17. https://doi.org/10.1016/j.cellimm.2010.10.007.

Article  CAS  PubMed  Google Scholar 

Garg SK, Delaney C, Toubai T, Ghosh A, Reddy P, Banarjee R, et al. Aging is associated with increased regulatory T-cell function. Aging Cell. 2014;13(3):441–8. https://doi.org/10.1111/acel.12191.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Ann Rev Pathol Mech Dis. 2010;5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144.

Article  CAS  Google Scholar 

Arranz L, Lord JM, De la Fuente M. Preserved ex vivo inflammatory status and cytokine responses in naturally long-lived mice. Age. 2010;32(4):451–66. https://doi.org/10.1007/s11357-010-9151-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colonna-Romano G, Aquino A, Bulati M, Di Lorenzo G, Listi F, Vitello S, et al. Memory B cell subpopulations in the aged. Rejuvenation Res. 2006;9(1):149–56. https://doi.org/10.1089/rej.2006.9.149.

Article  CAS  PubMed  Google Scholar 

Duggal NA, Upton J, Phillips AC, Sapey E, Lord JM. An age-related numerical and functional deficit in CD19+CD24hi CD38hi B cells is associated with an increase in systemic autoimmunity. Aging Cell. 2013;12(5):873–81. https://doi.org/10.1111/acel.12114.

Article  CAS  PubMed  Google Scholar 

Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020;108(1):17–41. https://doi.org/10.1002/jlb.3covr0520-272r.

Article  CAS  PubMed  Google Scholar 

Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020;11:827. https://doi.org/10.3389/fimmu.2020.00827.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hotez PJ, Bottazzi ME, Corry DB. The potential role of Th17 immune responses in coronavirus immunopathology and vaccine-induced immune enhancement. Microbes Infect. 2020;22(4):165–7. https://doi.org/10.1016/j.micinf.2020.04.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rahimzadeh M, Naderi N. Toward an understanding of regulatory T cells in COVID-19: a systematic review. J Med Virol. 2021;93(7):4167–81. https://doi.org/10.1002/jmv.26891.

Article  CAS  PubMed  Google Scholar 

Sadeghi A, Tahmasebi S, Mahmood A, Kuznetsova M, Valizadeh H, Taghizadieh A, et al. Th17 and Treg cells function in SARS-CoV2 patients compared with healthy controls. J Cell Physiol. 2021;236(4):2829–39. https://doi.org/10.1002/jcp.30047.

Article  CAS  PubMed  Google Scholar 

Kramer B, Knoll R, Bonaguro L, ToVinh M, Raabe J, Astaburuaga-Garcia R, et al. Early IFN-α signatures and persistent dysfunction are distinguishing features of NK cells. Immunity. 2021;54(11):2650–69. https://doi.org/10.1016/j.immuni.2021.09.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, Ittner CAG, Weisman AR, et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol. 2020;5(49):eabd7114. https://doi.org/10.1126/sciimmunol.abd7114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alpert A, Pickman Y, Leipold M, Rosenberg-Hasson Y, Ji X, Gaujoux R, et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal profiling. Nat Med. 2019;25:487–95. https://doi.org/10.1038/s41591-019-0381-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Channappanavar R, Fett C, Zhao J, Meyerholz DK, Perlman S. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J Virol. 2014;88(19):11034–44.

Article  PubMed  PubMed Central  Google Scholar 

Kared H, Martelli S, Ng TP, Pender SLF, Larbi A. CD57 in human natural killer cells and T lymphocytes. Cancer Immunol Immunother. 2016;65(4):441–52. https://doi.org/10.1007/s00262-016-1803-z.

Article  CAS  PubMed  Google Scholar 

Voehringer D, Koschella M, Pircher H. Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). Blood. 2002;100(10):3698–702. https://doi.org/10.1182/blood-2002-02-0657.

Article  CAS  PubMed  Google Scholar 

Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8(6):467–77. https://doi.org/10.1038/nri2326.

Article  CAS  PubMed  Google Scholar 

Zelinsky G, Dietze KK, Husecken YP, Schimmer S, Nair S, Werner T, et al. The regulatory T-cell response during acute retroviral infection is locally defined and controls the magnitude and duration of the virus-specific cytotoxic T-cell response. Blood. 2009;114:3199–207. https://doi.org/10.1182/blood-2009-03-208736.

Article  CAS  Google Scholar 

Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. The phenotype of human Th17 cells and their precursors, the cytokines that mediate their differentiation and role of Th17 cells in inflammation. Int Immunol. 2008;20(11):1361–8. https://doi.org/10.1093/intimm/dxn106.

Article  CAS  PubMed  Google Scholar 

Carter NA, Rosser EC, Mauri C. Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. Arthritis Res Ther. 2012;14(1):R32. https://doi.org/10.1186/ar3736.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montaldo E, Del Zotto G, Della Chiesa M, Mingari MC, Moretta A, De Maria A, et al. Human NK cell receptors/markers: a tool to analyse NK cell development, subsets and function. Cytom Part A. 2013;83(8):A:702–713. https://doi.org/10.1002/cyto.a.22302.

Article  Google Scholar 

Nielsen CM, White MJ, Goodier MR, Riley EM. Functional significance of CD57 expression on human NK cells and relevance to disease. Front Immunol. 2013;4:422. https://doi.org/10.3389/fimmu.2013.00422.

留言 (0)

沒有登入
gif