Growth and longevity modulation through larval environment mediate immunosenescence and immune strategy of Tenebrio molitor

Jones OR, Scheuerlein A, Salguero-Gómez R, Camarda CG, Schaible R, Casper BB, et al. Diversity of ageing across the tree of life. Nature. 2014;505(7482):169–73.

Article  CAS  PubMed  Google Scholar 

Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998;78(2):547–81.

Article  CAS  PubMed  Google Scholar 

Kujoth GC, Bradshaw PC, Haroon S, Prolla TA. The role of mitochondrial DNA mutations in mammalian aging. PLoS Genet. 2007;3(2):e24.

Article  PubMed  PubMed Central  Google Scholar 

Monaghan P, Haussmann MF. Do telomere dynamics link lifestyle and lifespan? Trends Ecol Evol. 2006;21(1):47–53.

Article  PubMed  Google Scholar 

Flatt T, Partridge L. Horizons in the evolution of aging. BMC Biol. 2018;16(1):93.

Article  PubMed  PubMed Central  Google Scholar 

Hamilton WD. The moulding of senescence by natural selection. J Theor Biol. 1966;12(1):12–45.

Article  CAS  PubMed  Google Scholar 

Medawar PB. An unsolved problem of biology. London: H. K. Lewis; 1952.

Google Scholar 

Moorad J, Promislow D, Silvertown J. Evolutionary ecology of senescence and a reassessment of Williams’ ‘extrinsic mortality’ hypothesis. Trends Ecol Evol. 2019;34(6):519–30.

Article  PubMed  PubMed Central  Google Scholar 

Williams GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution. 1957;11(4):398–411.

Article  Google Scholar 

Stearns SC. The evolution of life histories. Oxford, New York: Oxford University Press; 1992. p. 262.

Google Scholar 

Kirkwood TBL. Evolution of ageing. Nature. 1977;270(5635):301–4.

Article  CAS  PubMed  Google Scholar 

Lemaître JF, Berger V, Bonenfant C, Douhard M, Gamelon M, Plard F, et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc Royal Soc B Biol Sci. 1806;2015(282):20150209.

Google Scholar 

Maklakov AA, Chapman T. Evolution of ageing as a tangle of trade-offs: energy versus function. Proc Royal Soc B Biol Sci. 1911;2019(286):20191604.

Google Scholar 

Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity. 2022;55(1):14–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Modlin RL, Doherty P. Host-pathogen interactions - host defense against microbial pathogens - the immune system’s weapons of mass destruction. Curr Opin Immunol. 2003;4(15):393–5.

Article  Google Scholar 

Jones OR, Gaillard JM, Tuljapurkar S, Alho JS, Armitage KB, Becker PH, et al. Senescence rates are determined by ranking on the fast–slow life-history continuum. Ecol Lett. 2008;11(7):664–73.

Article  PubMed  Google Scholar 

Kirkwood TBL, Rose MR. Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B Biol Sci. 1991;332(1262):15–24.

Article  CAS  PubMed  Google Scholar 

Rodríguez-Muñoz R, Boonekamp JJ, Liu XP, Skicko I, Fisher DN, Hopwood P, et al. Testing the effect of early-life reproductive effort on age-related decline in a wild insect. Evolution. 2019;73(2):317–28.

Article  PubMed  PubMed Central  Google Scholar 

Peters A, Delhey K, Nakagawa S, Aulsebrook A, Verhulst S. Immunosenescence in wild animals: meta-analysis and outlook. Ecol Lett. 2019;22(10):1709–22.

Article  PubMed  Google Scholar 

Ribeiro N, Abelho M, Costa R. A review of the scientific literature for optimal conditions for mass rearing Tenebrio molitor (Coleoptera: Tenebrionidae). J Entomol Sci. 2018;53(4):434–54.

Google Scholar 

van Huis A. Prospects of insects as food and feed. Org Agr. 2021;11(2):301–8.

Article  Google Scholar 

Cotter SC, Simpson SJ, Raubenheimer D, Wilson K. Macronutrient balance mediates trade-offs between immune function and life history traits. Funct Ecol. 2011;25(1):186–98.

Article  Google Scholar 

Vigneron A, Jehan C, Rigaud T, Moret Y. Immune Defenses of a beneficial pest: the mealworm beetle, Tenebrio molitor. Front Physiol. 2019;10. Available from: https://www.frontiersin.org/articles/10.3389/fphys.2019.00138/full. Cited 2021 Mar 10.

Chung KH, Moon MJ. Fine structure of the hemopoietic tissues in the mealworm beetle, Tenebrio molitor. Entomol Res. 2004;34(2):131–8.

Article  Google Scholar 

Söderhäll K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol. 1998;10(1):23–8.

Article  PubMed  Google Scholar 

Urbański A, Adamski Z, Rosiński G. Developmental changes in haemocyte morphology in response to Staphylococcus aureus and latex beads in the beetle Tenebrio molitor L. Micron. 2018;1(104):8–20.

Article  Google Scholar 

Vommaro ML, Kurtz J, Giglio A. Morphological characterisation of haemocytes in the mealworm beetle Tenebrio molitor (Coleoptera, Tenebrionidae). Insects. 2021;12(5):423.

Article  PubMed  PubMed Central  Google Scholar 

Cerenius L, Lee BL, Söderhäll K. The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol. 2008;29(6):263–71.

Article  CAS  PubMed  Google Scholar 

Siva-Jothy MT, Moret Y, Rolff J. Insect immunity: an evolutionary ecology perspective. In: Simpson SJ, editor. Advances in insect physiology. Academic Press; 2005. p. 1–48. Available from: https://www.sciencedirect.com/science/article/pii/S0065280605320017. Cited 2023 Aug 16.

Nappi AJ, Ottaviani E. Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays. 2000;22(5):469–80.

Article  CAS  PubMed  Google Scholar 

Urabe K, Aroca P, Tsukamoto K, Mascagna D, Palumbo A, Prota G, et al. The inherent cytotoxicity of melanin precursors: a revision. Biochim Biophys Acta. 1994;1221(3):272–8.

Article  CAS  PubMed  Google Scholar 

Nappi AJ, Vass E, Frey F, Carton Y. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur J Cell Biol. 1995;68(4):450–6.

CAS  PubMed  Google Scholar 

Zhao P, Lu Z, Strand MR, Jiang H. Antiviral, anti-parasitic, and cytotoxic effects of 5,6-dihydroxyindole (DHI), a reactive compound generated by phenoloxidase during insect immune response. Insect Biochem Mol Biol. 2011;41(9):645–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daukšte J, Kivleniece I, Krama T, Rantala MJ, Krams I. Senescence in immune priming and attractiveness in a beetle. J Evol Biol. 2012;25(7):1298–304.

Article  PubMed  Google Scholar 

Khan I, Prakash A, Agashe D. Pathogen susceptibility and fitness costs explain variation in immune priming across natural populations of flour beetles. J Anim Ecol. 2019;88(9):1332–42.

Article  PubMed  Google Scholar 

Krams I, Daukšte J, Kivleniece I, Kaasik A, Krama T, Freeberg TM, et al. Trade-off between cellular immunity and life span in mealworm beetles Tenebrio molitor. Current Zoology. 2013;59(3):340–6.

Article  Google Scholar 

Pursall ER, Rolff J. Immune responses accelerate ageing: proof-of-principle in an insect model. PLoS ONE. 2011;6(5):e19972.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sadd BM, Siva-Jothy MT. Self-harm caused by an insect’s innate immunity. Proc Royal Soc B Biol Sci. 2006;273(1600):2571–4.

Article  Google Scholar 

Khan I, Agashe D, Rolff J. Early-life inflammation, immune response and ageing. Proc Royal Soc B Biol Sci. 1850;2017(284):20170125.

Google Scholar 

Chae JH, Kurokawa K, So YI, Hwang HO, Kim MS, Park JW, et al. Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev Comp Immunol. 2012;36(3):540–6.

Article  CAS  PubMed  Google Scholar 

Kim DH, Lee YT, Lee YJ, Chung JH, Lee BL, Choi BS, et al. Bacterial expression of tenecin 3, an insect antifungal protein isolated from Tenebrio molitor, and its efficient purification. Mol Cells. 1998;8(6):786–9.

Article  CAS  PubMed  Google Scholar 

Moon HJ, Lee SY, Kurata S, Natori S, Lee BL. Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor1. J Biochem. 1994;116(1):53–8.

Article  CAS  PubMed  Google Scholar 

Roth O, Sadd BM, Schmid-Hempel P, Kurtz J. Strain-specific priming of resistance in the red flour beetle, Tribolium castaneum. Proc Royal Soc B Biol Sci. 2009;276(1654):145–51.

Article  Google Scholar 

Lee YJ, Chung TJ, Park CW, Hahn Y, Chung JH, Lee BL, et al. Structure and expression of the tenecin 3 gene in Tenebrio molitor. Biochem Biophys Res Commun. 1996;218(1):6–11.

Article  CAS  PubMed  Google Scholar 

Haine ER, Moret Y, Siva-Jothy MT, Rolff J. Antimicrobial defense and persistent infection in insects. Science. 2008;322(5905):1257–9.

留言 (0)

沒有登入
gif