Hypoxia enhances human myoblast differentiation: involvement of HIF1α and impact of DUX4, the FSHD causal gene

Semenza GL. HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107:1–3.

Article  CAS  PubMed  Google Scholar 

Forcina L, Miano C, Pelosi L, Musaro A. An Overview about the Biology of Skeletal Muscle Satellite Cells. Curr Genomics. 2019;20:24–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 2017;72:19–32.

Nguyen T-H, Conotte S, Belayew A, Declèves A-E, Legrand A, Tassin A. Hypoxia and hypoxia-inducible factor signaling in muscular dystrophies: cause and consequences. Int J Mol Sci. 2021;22:7220.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Majmundar AJ, Lee DSM, Skuli N, Mesquita RC, Kim MN, Yodh AG, et al. HIF modulation of Wnt signaling regulates skeletal myogenesis in vivo. Dev Camb Engl. 2015;142:2405–12.

CAS  Google Scholar 

Cirillo F, Resmini G, Ghiroldi A, Piccoli M, Bergante S, Tettamanti G, et al. Activation of the hypoxia-inducible factor 1a promotes myogenesis through the noncanonical Wnt pathway, leading to hypertrophic myotubes. FASEB J. 2017;31:2146–56.

Article  CAS  PubMed  Google Scholar 

Jash S, Adhya S. Effects of transient hypoxia versus prolonged hypoxia on satellite cell proliferation and differentiation in vivo. Stem Cells Int. 2015;2015:e961307.

Sakushima K, Yoshikawa M, Osaki T, Miyamoto N, Hashimoto T. Moderate hypoxia promotes skeletal muscle cell growth and hypertrophy in C2C12 cells. Biochem Biophys Res Commun. 2020;525:921–7.

Article  CAS  PubMed  Google Scholar 

Koning M, Werker PMN, van Luyn MJA, Harmsen MC. Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle. Tissue Eng Part A. 2011;17:1747–58.

Article  CAS  PubMed  Google Scholar 

Launay T, Hagström L, Lottin-Divoux S, Marchant D, Quidu P, Favret F, et al. Blunting effect of hypoxia on the proliferation and differentiation of human primary and rat L6 myoblasts is not counteracted by Epo. Cell Prolif. 2010;43:1–8.

Article  CAS  PubMed  Google Scholar 

Yang X, Yang S, Wang C, Kuang S. The hypoxia-inducible factors HIF1α and HIF2α are dispensable for embryonic muscle development but essential for postnatal muscle regeneration. J Biol Chem. 2017;292:5981–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niemi H, Honkonen K, Korpisalo P, Huusko J, Kansanen E, Merentie M, et al. HIF-1α and HIF-2α induce angiogenesis and improve muscle energy recovery. Eur J Clin Invest. 2014;44:989–99.

Article  CAS  PubMed  Google Scholar 

Tang K, Breen EC, Gerber H-P, Ferrara NMA, Wagner PD. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol Genomics. 2004;18:63–9.

Article  CAS  PubMed  Google Scholar 

Olfert IM, Howlett RA, Wagner PD, Breen EC. Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis. Am J Physiol Regul Integr Comp Physiol. 2010;299:R1059–1067.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Settelmeier S, Schreiber T, Mäki J, Byts N, Koivunen P, Myllyharju J, et al. Prolyl hydroxylase domain 2 reduction enhances skeletal muscle tissue regeneration after soft tissue trauma in mice. PLoS ONE. 2020;15:e0233261. 

Banerji CRS, Knopp P, Moyle LA, Severini S, Orrell RW, Teschendorff AE, et al. β-Catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy. J R Soc Interface. 2015;12:20140797.

Article  PubMed  PubMed Central  Google Scholar 

Banerji CRS, Panamarova M, Hebaishi H, White RB, Relaix F, Severini S, et al. PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy skeletal muscle. Nat Commun. 2017;8:2152.

Article  PubMed  PubMed Central  Google Scholar 

Wang LH, Tawil R. Facioscapulohumeral dystrophy. Curr Neurol Neurosci Rep. 2016;16:66.

Article  PubMed  Google Scholar 

Dixit M, Ansseau E, Tassin A, Winokur S, Shi R, Qian H, et al. DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proc Natl Acad Sci U S A. 2007;104:18157–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemmers RJLF, van der Vliet PJ, Klooster R, Sacconi S, Camaño P, Dauwerse JG, et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science. 2010;329:1650–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geng LN, Yao Z, Snider L, Fong AP, Cech JN, Young JM, et al. DUX4 activates germline genes, retroelements and immune-mediators: implications for facioscapulohumeral dystrophy. Dev Cell. 2012;22:38–51.

Article  CAS  PubMed  Google Scholar 

Snider L, Geng LN, Lemmers RJLF, Kyba M, Ware CB, Nelson AM, et al. Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet. 2010;6:e1001181.

Vanderplanck C, Ansseau E, Charron S, Stricwant N, Tassin A, Laoudj-Chenivesse D, et al. The FSHD atrophic myotube phenotype is caused by DUX4 expression. PLoS One. 2011;6:e26820.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim KRQ, Nguyen Q, Yokota T. DUX4 Signalling in the Pathogenesis of Facioscapulohumeral Muscular Dystrophy. Int J Mol Sci. 2020;21:729.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jagannathan S, Ogata Y, Gafken PR, Tapscott SJ, Bradley RK. Quantitative proteomics reveals key roles for post-transcriptional gene regulation in the molecular pathology of facioscapulohumeral muscular dystrophy. eLife. 2019;8:e41740.

Article  PubMed  PubMed Central  Google Scholar 

Banerji CRS, Zammit PS. Pathomechanisms and biomarkers in facioscapulohumeral muscular dystrophy: roles of DUX4 and PAX7. EMBO Mol Med. 2021;13:e13695.

Tsumagari K, Chang S-C, Lacey M, Baribault C, Chittur SV, Sowden J, et al. Gene expression during normal and FSHD myogenesis. BMC Med Genomics. 2011;4:67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lek A, Zhang Y, Woodman KG, Huang S, DeSimone AM, Cohen J, et al. Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy. Sci Transl Med. 2020;12(536):eaay0271.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen T-H, Bouhmidi S, Paprzycki L, Legrand A, Declèves A-E, Heher P, et al. The DUX4-HIF1α axis in murine and human muscle cells: a link more complex than expected [Internet]. Preprints; 2022. [cited 2022 Dec 19]. Available from: https://www.preprints.org/manuscript/202211.0532/v2.

Barro M, Carnac G, Flavier S, Mercier J, Vassetzky Y, Laoudj-Chenivesse D. Myoblasts from affected and non-affected FSHD muscles exhibit morphological differentiation defects. J Cell Mol Med. 2010;14:275–89.

Article  CAS  PubMed  Google Scholar 

Banerji CRS, Panamarova M, Pruller J, Figeac N, Hebaishi H, Fidanis E, et al. Dynamic transcriptomic analysis reveals suppression of PGC1α/ERRα drives perturbed myogenesis in facioscapulohumeral muscular dystrophy. Hum Mol Genet. 2019;28:1244–59.

Article  CAS  PubMed  Google Scholar 

Banerji CRS, Henderson D, Tawil RN, Zammit PS. Skeletal muscle regeneration in facioscapulohumeral muscular dystrophy is correlated with pathological severity. Hum Mol Genet. 2020;29:2746–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res. 2022;411:112906.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganassi M, Zammit PS. Involvement of muscle satellite cell dysfunction in neuromuscular disorders: expanding the portfolio of satellite cell-opathies. Eur J Transl Myol. 2022;32:10064.

Article  PubMed  PubMed Central  Google Scholar 

Krom YD, Dumonceaux J, Mamchaoui K, den Hamer B, Mariot V, Negroni E, et al. Generation of isogenic D4Z4 contracted and noncontracted immortal muscle cell clones from a mosaic patient. Am J Pathol. 2012;181:1387–401.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi SH, Gearhart MD, Cui Z, Bosnakovski D, Kim M, Schennum N, et al. DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes. Nucleic Acids Res. 2016;44:5161–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bosnakovski D, Gearhart MD, Toso EA, Ener ET, Choi SH, Kyba M. Low level DUX4 expression disrupts myogenesis through deregulation of myogenic gene expression. Sci Rep. 2018;8:16957.

Article  PubMed  PubMed Central  Google Scholar 

Chaillou T, Lanner JT. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. FASEB J Off Publ Fed Am Soc Exp Biol. 2016;30:3929–41. 

Article  CAS  PubMed  Google Scholar 

Kook S-H, Son Y-O, Lee K-Y, Lee H-J, Chung W-T, Choi K-C, et al. Hypoxia affects positively the proliferation of bovine satellite cells and their myogenic differentiation through up-regulation of MyoD. Cell Biol Int. 2008;32:871–8.

Article 

留言 (0)

沒有登入
gif