Role of Inflammatory Processes in the Brain-Body Relationship Underlying Hypertension

Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217–23. https://doi.org/10.1016/S0140-6736(05)17741-1.

Article  PubMed  Google Scholar 

Chobanian AV. Shattuck Lecture. The hypertension paradox--more uncontrolled disease despite improved therapy. N Engl J Med. 2009;361(9):878–87. https://doi.org/10.1056/NEJMsa0903829.

Esler M. The sympathetic nervous system in hypertension: back to the future? Curr Hypertens Rep. 2015;17(2):11. https://doi.org/10.1007/s11906-014-0519-8.

Article  CAS  PubMed  Google Scholar 

Takahashi H. Upregulation of the Renin-Angiotensin-aldosterone-ouabain system in the brain is the core mechanism in the genesis of all types of hypertension. Int J Hypertens. 2012;2012: 242786. https://doi.org/10.1155/2012/242786.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karim S, Chahal A, Khanji MY, Petersen SE, Somers VK. Autonomic cardiovascular control in health and disease. Compr Physiol. 2023;13(2):4493–511. https://doi.org/10.1002/cphy.c210037.

Article  PubMed  Google Scholar 

Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011;17(11):1402–9. https://doi.org/10.1038/nm.2541.

Article  CAS  PubMed  Google Scholar 

Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol. 2019;19(8):517–32. https://doi.org/10.1038/s41577-019-0160-5.

Article  CAS  PubMed  Google Scholar 

Esler M. The sympathetic nervous system through the ages: from Thomas Willis to resistant hypertension. Exp Physiol. 2011;96(7):611–22. https://doi.org/10.1113/expphysiol.2011.052332.

Article  PubMed  Google Scholar 

• Carnevale D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat Rev Cardiol. 2022;19(6):379–94. https://doi.org/10.1038/s41569-022-00678-w. This review article describes how the nervous system entangles primary, secondary, and tertiary immune organs, providing a perspective on the neural modulation of immune responses relevant to CVD.

Article  PubMed  Google Scholar 

Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52(4):595–638.

CAS  PubMed  Google Scholar 

Fliers E, Kreier F, Voshol PJ, Havekes LM, Sauerwein HP, Kalsbeek A, et al. White adipose tissue: getting nervous. J Neuroendocrinol. 2003;15(11):1005–10. https://doi.org/10.1046/j.1365-2826.2003.01096.x.

Article  CAS  PubMed  Google Scholar 

Ayala-Lopez N, Martini M, Jackson WF, Darios E, Burnett R, Seitz B, et al. Perivascular adipose tissue contains functional catecholamines. Pharmacol Res Perspect. 2014;2(3): e00041. https://doi.org/10.1002/prp2.41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma M, Schlegel M, Brown EJ, Sansbury BE, Weinstock A, Afonso MS et al. Netrin-1 alters adipose tissue macrophage fate and function in obesity. Immunometabolism. 2019;1(2). https://doi.org/10.20900/immunometab20190010.

Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Ufnal M, Zera T. Brain and cardiovascular diseases: common neurogenic background of cardiovascular, metabolic and inflammatory diseases. J Physiol Pharmacol. 2010;61(5):509–21.

CAS  PubMed  Google Scholar 

Kasparov S, Teschemacher AG. Altered central catecholaminergic transmission and cardiovascular disease. Exp Physiol. 2008;93(6):725–40. https://doi.org/10.1113/expphysiol.2007.041814.

Article  CAS  PubMed  Google Scholar 

Xi H, Li X, Zhou Y, Sun Y. The regulatory effect of the paraventricular nucleus on hypertension. neuroendocrinology. 2023. https://doi.org/10.1159/000533691.

Elsaafien K, de Kloet AD, Krause EG, Sumners C. Brain angiotensin type-1 and type-2 receptors in physiological and hypertensive conditions: focus on neuroinflammation. Curr Hypertens Rep. 2020;22(7):48. https://doi.org/10.1007/s11906-020-01062-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frazier CJ, Harden SW, Alleyne AR, Mohammed M, Sheng W, Smith JA, et al. An angiotensin-responsive connection from the lamina terminalis to the paraventricular nucleus of the hypothalamus evokes vasopressin secretion to increase blood pressure in mice. J Neurosci. 2021;41(7):1429–42. https://doi.org/10.1523/JNEUROSCI.1600-20.2020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Hiller H, Smith JA, de Kloet AD, Krause EG. Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus control cardiovascular reactivity and anxiety-like behavior in male mice. Physiol Genomics. 2016;48(9):667–76. https://doi.org/10.1152/physiolgenomics.00029.2016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98(3):1627–738. https://doi.org/10.1152/physrev.00038.2017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santisteban MM, Iadecola C, Carnevale D. Hypertension, neurovascular dysfunction, and cognitive impairment. Hypertension. 2023;80(1):22–34. https://doi.org/10.1161/HYPERTENSIONAHA.122.18085.

Article  CAS  PubMed  Google Scholar 

Wei SG, Yu Y, Felder RB. Blood-borne interleukin-1beta acts on the subfornical organ to upregulate the sympathoexcitatory milieu of the hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol. 2018;314(3):R447–58. https://doi.org/10.1152/ajpregu.00211.2017.

Article  CAS  PubMed  Google Scholar 

Wei SG, Zhang ZH, Beltz TG, Yu Y, Johnson AK, Felder RB. Subfornical organ mediates sympathetic and hemodynamic responses to blood-borne proinflammatory cytokines. Hypertension. 2013;62(1):118–25. https://doi.org/10.1161/HYPERTENSIONAHA.113.01404.

Article  CAS  PubMed  Google Scholar 

Labus J, Hackel S, Lucka L, Danker K. Interleukin-1beta induces an inflammatory response and the breakdown of the endothelial cell layer in an improved human THBMEC-based in vitro blood-brain barrier model. J Neurosci Methods. 2014;228:35–45. https://doi.org/10.1016/j.jneumeth.2014.03.002.

Article  CAS  PubMed  Google Scholar 

Rochfort KD, Collins LE, Murphy RP, Cummins PM. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions. PLoS ONE. 2014;9(7): e101815. https://doi.org/10.1371/journal.pone.0101815.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paton JF, Wang S, Polson JW, Kasparov S. Signalling across the blood brain barrier by angiotensin II: novel implications for neurogenic hypertension. J Mol Med (Berl). 2008;86(6):705–10. https://doi.org/10.1007/s00109-008-0324-4.

Article  CAS  PubMed  Google Scholar 

Zhang M, Mao Y, Ramirez SH, Tuma RF, Chabrashvili T. Angiotensin II induced cerebral microvascular inflammation and increased blood-brain barrier permeability via oxidative stress. Neuroscience. 2010;171(3):852–8. https://doi.org/10.1016/j.neuroscience.2010.09.029.

Article  CAS  PubMed  Google Scholar 

Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension. 2014;63(3):572–9. https://doi.org/10.1161/HYPERTENSIONAHA.113.01743.

Article  CAS  PubMed  Google Scholar 

Paton JF, Raizada MK. Neurogenic hypertension. Exp Physiol. 2010;95(5):569–71. https://doi.org/10.1113/expphysiol.2009.047282.

Article  PubMed  Google Scholar 

Cardinale JP, Sriramula S, Mariappan N, Agarwal D, Francis J. Angiotensin II-induced hypertension is modulated by nuclear factor-kappaBin the paraventricular nucleus. Hypertension. 2012;59(1):113–21. https://doi.org/10.1161/HYPERTENSIONAHA.111.182154.

Article  CAS  PubMed  Google Scholar 

Kang YM, He RL, Yang LM, Qin DN, Guggilam A, Elks C, et al. Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res. 2009;83(4):737–46. https://doi.org/10.1093/cvr/cvp160.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi Z, Gan XB, Fan ZD, Zhang F, Zhou YB, Gao XY, et al. Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats. Acta Physiol (Oxf). 2011;203(2):289–97. https://doi.org/10.1111/j.1748-1716.2011.02313.x.

Article  CAS  PubMed  Google Scholar 

• Santisteban MM, Ahn SJ, Lane D, Faraco G, Garcia-Bonilla L, Racchumi G, et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension. 2020;76(3):795–807. https://doi.org/10.1161/HYPERTENSIONAHA.120.15581. Paper showing how the brain can be at the interface of vascular and immune system as a tissue target of chronic high blood pressure. Vascular-immune interactions are responsible for damage of the BBB, which in turn affects brain homeostasis.

Article  CAS  PubMed  Google Scholar 

Nguyen G, Muller DN. The biology of the (pro)renin receptor. J Am Soc Nephrol. 2010;21(1):18–23. https://doi.org/10.1681/ASN.2009030300.

Article  CAS  PubMed  Google Scholar 

Hilzendeger AM, Morgan DA, Brooks L, Dellsperger D, Liu X, Grobe JL, et al. A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve a

留言 (0)

沒有登入
gif