Neuroimmunology of Cardiovascular Disease

Morimoto K, Nakajima K. Role of the immune system in the development of the central nervous system. Front Neurosci. 2019;13:916.

Article  PubMed  PubMed Central  Google Scholar 

Salvador AF, de Lima KA, Kipnis J. Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol. 2021;21:526–41.

Article  CAS  PubMed  Google Scholar 

Filiano AJ, Gadani SP, Kipnis J. How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat Rev Neurosci. 2017;18:375–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

das Neves SP, Delivanoglou N, Da Mesquita S. CNS-draining meningeal lymphatic vasculature: roles, conundrums and future challenges. Front Pharmacol 2021;12.

Mazzitelli JA, et al. Skull bone marrow channels as immune gateways to the central nervous system. Nat Neurosci. 2023;26:2052–62.

Article  CAS  PubMed  Google Scholar 

Calvillo L, Gironacci MM, Crotti L, Meroni PL, Parati G. Neuroimmune crosstalk in the pathophysiology of hypertension. Nat Rev Cardiol. 2019;16:476–90.

Article  PubMed  Google Scholar 

Carnevale D. Role of inflammatory processes in the brain-body relationship underlying hypertension. Curr Hypertens Rep. 2023;25:455–61.

Article  PubMed  PubMed Central  Google Scholar 

Carnevale D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat Rev Cardiol. 2022;19:379–94.

Article  PubMed  Google Scholar 

Ahmari N, Hayward LF, Zubcevic J. The importance of bone marrow and the immune system in driving increases in blood pressure and sympathetic nerve activity in hypertension. Exp Physiol. 2020;105:1815–26.

Article  CAS  PubMed  Google Scholar 

Hu J-R, Abdullah A, Nanna MG, Soufer R. The brain–heart axis: neuroinflammatory interactions in cardiovascular disease. Curr Cardiol Rep. 2023. https://doi.org/10.1007/s11886-023-01990-8.

Article  PubMed  PubMed Central  Google Scholar 

Choi SS, Lee HJ, Lim I, Satoh J, Kim SU. Human astrocytes: secretome profiles of cytokines and chemokines. PLoS ONE. 2014;9: e92325.

Article  PubMed  PubMed Central  Google Scholar 

Chhor V, et al. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun. 2013;32:70–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Konishi H, Koizumi S, Kiyama H. Phagocytic astrocytes: emerging from the shadows of microglia. Glia. 2022;70:1009–26.

Article  PubMed  PubMed Central  Google Scholar 

Gentleman SM. Review: microglia in protein aggregation disorders: friend or foe? Neuropathol Appl Neurobiol. 2013;39:45–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci. 2013;7:6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rostami J, et al. Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson’s disease brain. J Neuroinflammation. 2020;17:119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolf Y, et al. Microglial MHC class II is dispensable for experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. Eur J Immunol. 2018;48:1308–18.

Article  CAS  PubMed  Google Scholar 

Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.

Article  CAS  PubMed  Google Scholar 

Kiyoshi CM, Zhou M. Astrocyte syncytium: a functional reticular system in the brain. Neural Regen Res. 2019;14:595–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience. 2016;323:96–109.

Article  CAS  PubMed  Google Scholar 

Rostami J, et al. Crosstalk between astrocytes and microglia results in increased degradation of α-synuclein and amyloid-β aggregates. J Neuroinflammation. 2021;18:124.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu W, Wong A, Law ACK, Mok VCT. Cerebrovascular disease, amyloid plaques, and dementia. Stroke. 2015;46:1402–7.

Article  PubMed  Google Scholar 

Utz SG, et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell 2020;181:557–573.

Goldmann T, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol. 2016;17:797–805.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Drieu A, et al. Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature. 2022;611:585–93. This study shows that BAMs can regulate the flow of CSF by promoting arterial motion. Depletion of BAMs impairs CSF perfusion and clearance.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Uekawa K, et al. Border-associated macrophages promote cerebral amyloid angiopathy and cognitive impairment through vascular oxidative stress. Mol Neurodegener. 2023;18:73. This study shows that BAM-derived ROS promotes neurovascular dysfunction in middle-aged Tg2576 mice. BAM depletion prevents vascular remodeling and rescues cognitive impairment.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faraco G, et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest. 2016;126:4674–89.

Article  PubMed  PubMed Central  Google Scholar 

• Taylor X, et al. Amyloid-beta (Abeta) immunotherapy induced microhemorrhages are associated with activated perivascular macrophages and peripheral monocyte recruitment in Alzheimer’s disease mice. Mol Neurodegener. 2023;18:59. In this study, activated BAMs accumulate around anti-Aβ antibodies, leading to increased vascular permeability and immune cell infiltration.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mundt S, Keller A, Greter M. The dural sinus hub: more than just a brain drain. Cell. 2021;184:858–60.

Article  CAS  PubMed  Google Scholar 

•• Rustenhoven J, et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 2021;184:1000–1016. This study details the immune cell interactions in the dura in health and neurodegeneration.

Antila S, et al. Development and plasticity of meningeal lymphatic vessels. J Exp Med. 2017;214:3645–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Louveau A, et al. Structural and functional features of central nervous system lymphatics. Nature. 2015;523:337–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sato T, Konishi H, Tamada H, Nishiwaki K, Kiyama H. Morphology, localization, and postnatal development of dural macrophages. Cell Tissue Res. 2021;384:49–58.

Article  CAS  PubMed  Google Scholar 

• Schafflick D, et al. Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nat Neurosci. 2021;24:1225–34. This study found that the dura is a site for B-cell maturation and that these B-cells are not from the periphery.

Article  CAS  PubMed  Google Scholar 

Brioschi S, et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 2021;373:eabf9277.

Chen Z, Liu P, Xia X, Wang L, Li X. Living on the border of the CNS: dural immune cells in health and disease. Cell Immunol. 2022;377: 104545.

Article  CAS  PubMed  Google Scholar 

Fitzpatrick Z, et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature. 2020;587:472–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Cugurra A, et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 2021;373. This study demonstrates that the skull bone marrow replenishes the immune cells in the meninges and other brain borders, thereby challenging the current views on immune cell infiltration.

•• Herisson F, et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat Neurosci. 2018;21:1209–17. This was one of the first studies to demonstrate that the skull bone marrow supplies the dural immune cell populations.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Mazzitelli JA, et al. Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat Neurosci. 2022;25:555–60. This study uses fluorescent tracers to identify ossified channels between the skull bone marrow and the dura.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif