Breaking the Barrier: The Role of Gut Epithelial Permeability in the Pathogenesis of Hypertension

Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke J-D, Serino M, et al. Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. https://doi.org/10.1186/s12876-014-0189-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Snelson M, Tan S, Clarke R, de Pasquale C, Thallas-Bonke V, Nguyen T, et al. Processed Foods drive Intestinal Barrier permeability and Microvascular Diseases. Sci Adv. 2021;7(14). https://doi.org/10.1126/sciadv.abe4841.

Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol. 2024. https://doi.org/10.1038/s41569-023-00964-1.

Article  PubMed  Google Scholar 

Koch F, Thom U, Albrecht E, Weikard R, Nolte W, Kuhla B, et al. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proc Natl Acad Sci. 2019;116(21):10333–8. https://doi.org/10.1073/pnas.1820130116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Houghton MJ, Snipe RMJ, Williamson G, Costa RJS. Plasma measurements of the dual sugar test reveal carbohydrate immediately alleviates intestinal permeability caused by exertional heat stress. J Physiol. 2023;601(20):4573–89. https://doi.org/10.1113/jp284536.

Article  CAS  PubMed  Google Scholar 

Keirns BH, Koemel NA, Sciarrillo CM, Anderson KL, Emerson SR. Exercise and intestinal permeability: another form of exercise-induced hormesis? Am J Physiol Gastrointest Liver Physiol. 2020;319(4):G512–8. https://doi.org/10.1152/ajpgi.00232.2020.

Article  CAS  PubMed  Google Scholar 

Vanuytsel T, van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, Houben E, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. 2014;63(8):1293–9. https://doi.org/10.1136/gutjnl-2013-305690.

Article  CAS  PubMed  Google Scholar 

Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, Parthasarathy S. Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Adv Nutr. 2020;11(1):77–91. https://doi.org/10.1093/advances/nmz061.

Article  PubMed  Google Scholar 

Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–53 e21. https://doi.org/10.1016/j.cell.2016.10.043.

Wang Z, Chen W-H, Li S-X, He Z-M, Zhu W-L, Ji Y-B, et al. Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation. Mol Psychiatry. 2021;26(11):6277–92. https://doi.org/10.1038/s41380-021-01113-1.

Article  CAS  PubMed  Google Scholar 

Cuffee Y, Ogedegbe C, Williams NJ, Ogedegbe G, Schoenthaler A. Psychosocial risk factors for hypertension: an update of the literature. Curr Hypertens Rep. 2014;16(10):483. https://doi.org/10.1007/s11906-014-0483-3.

Article  PubMed  PubMed Central  Google Scholar 

Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16(4):223–37. https://doi.org/10.1038/s41581-019-0244-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helander HF, Fändriks L. Surface area of the digestive tract - revisited. Scand J Gastroenterol. 2014;49(6):681–9. https://doi.org/10.3109/00365521.2014.898326.

Article  PubMed  Google Scholar 

Buckley A, Turner JR. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb Perspect Biol. 2018;10(1). https://doi.org/10.1101/cshperspect.a029314.

Luis AS, Hansson GC. Intestinal mucus and their glycans: A habitat for thriving microbiota. Cell Host Microbe. 2023;31(7):1087–100. https://doi.org/10.1016/j.chom.2023.05.026.

Article  CAS  PubMed  Google Scholar 

Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73. https://doi.org/10.1126/science.1223490.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bomfim GF, Dos Santos RA, Oliveira MA, Giachini FR, Akamine EH, Tostes RC, et al. Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci (Lond). 2012;122(11):535–43. https://doi.org/10.1042/CS20110523.

Article  CAS  PubMed  Google Scholar 

Muralitharan RR, Zheng T, Dinakis E, Xie L, Barbaro-Wahl A, Jama HA, et al. GPR41/43 regulates blood pressure by improving gut epithelial barrier integrity to prevent TLR4 activation and renal inflammation. bioRxiv. 2023:2023.03.20.533376. https://doi.org/10.1101/2023.03.20.533376.

•• Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol. 2023;20(7):417–32. https://doi.org/10.1038/s41575-023-00766-3. This review provides in-depth details of the molecular mechanisms by which paracellular permeability is regulated, with relevance to disease conditions of the gastrointestinal tract.

Article  PubMed  Google Scholar 

O’Donoghue EJ, Krachler AM. Mechanisms of outer membrane vesicle entry into host cells. Cell Microbiol. 2016;18(11):1508–17. https://doi.org/10.1111/cmi.12655.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vanuytsel T, Tack J, Farre R. The Role of Intestinal Permeability in Gastrointestinal Disorders and Current Methods of Evaluation. Front Nutr. 2021;8. https://doi.org/10.3389/fnut.2021.717925.

Campbell HK, Maiers JL, DeMali KA. Interplay between tight junctions & adherens junctions. Exp Cell Res. 2017;358(1):39–44. https://doi.org/10.1016/j.yexcr.2017.03.061.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Günzel D. Claudins: vital partners in transcellular and paracellular transport coupling. Pflugers Arch. 2017;469(1):35–44. https://doi.org/10.1007/s00424-016-1909-3.

Article  CAS  PubMed  Google Scholar 

Zuo L, Kuo W-T, Turner JR. Tight Junctions as Targets and Effectors of Mucosal Immune Homeostasis. Cell Mol Gastroenterol Hepatol. 2020;10(2):327–40. https://doi.org/10.1016/j.jcmgh.2020.04.001.

Article  PubMed  PubMed Central  Google Scholar 

Wada M, Tamura A, Takahashi N, Tsukita S. Loss of claudins 2 and 15 from mice causes defects in paracellular Na+ flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology. 2013;144(2):369–80. https://doi.org/10.1053/j.gastro.2012.10.035.

Article  CAS  PubMed  Google Scholar 

Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM. Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns. 2006;6(6):581–8. https://doi.org/10.1016/j.modgep.2005.12.001.

Article  CAS  PubMed  Google Scholar 

Weber CR, Raleigh DR, Su L, Shen L, Sullivan EA, Wang Y, et al. Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. J Biol Chem. 2010;285(16):12037–46. https://doi.org/10.1074/jbc.M109.064808.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsai PY, Zhang B, He WQ, Zha JM, Odenwald MA, Singh G, et al. IL-22 Upregulates Epithelial Claudin-2 to Drive Diarrhea and Enteric Pathogen Clearance. Cell Host Microbe. 2017;21(6):671–81.e4. https://doi.org/10.1016/j.chom.2017.05.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki T, Yoshinaga N, Tanabe S. Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem. 2011;286(36):31263–71. https://doi.org/10.1074/jbc.M111.238147.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto T, Kojima T, Murata M, Takano K, Go M, Chiba H, et al. IL-1beta regulates expression of Cx32, occludin, and claudin-2 of rat hepatocytes via distinct signal transduction pathways. Exp Cell Res. 2004;299(2):427–41. https://doi.org/10.1016/j.yexcr.2004.06.011.

Article  CAS  PubMed  Google Scholar 

Raju P, Shashikanth N, Tsai PY, Pongkorpsakol P, Chanez-Paredes S, Steinhagen PR, et al. Inactivation of paracellular cation-selective claudin-2 channels attenuates immune-mediated experimental colitis in mice. J Clin Invest. 2020;130(10):5197–208. https://doi.org/10.1172/JCI138697.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hempstock W, Nagata N, Ishizuka N, Hayashi H. The effect of claudin-15 deletion on cationic selectivity and transport in paracellular pathways of the cecum and large intestine. Sci Rep. 2023;13(1):6799. https://doi.org/10.1038/s41598-023-33431-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buschmann MM, Shen L, Rajapakse H, Raleigh DR, Wang Y, Wang Y, et al. Occludin OCEL-domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux. Mol Biol Cell. 2013;24(19):3056–68. https://doi.org/10.1091/mbc.E12-09-0688.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saito AC, Higashi T, Fukazawa Y, Otani T, Tauchi M, Higashi AY, et al. Occludin and tricellulin facilitate formation of anastomosing tight-junction strand network to improve barrier function. Mol Biol Cell. 2021;32(8):722–38. https://doi.org/10.1091/mbc.E20-07-0464.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Graham WV, Wang F, Clayburgh DR, Cheng JX, Yoon B, Wang Y, et al. Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. Characterization of the human long myosin light chain kinase promoter. J Biol Chem. 2006;281(36):26205–15. https://doi.org/10.1074/jbc.M602164200.

Article 

留言 (0)

沒有登入
gif