Advances in Radiotherapy Immune Modulation

Dillekås H. Rogers M.S. Straume O.

Are 90% of deaths from cancer caused by metastases?.

Cancer Med. 8: 5574-5576Weichselbaum R.R. Liang H. Deng L. et al.

Radiotherapy and immunotherapy: a beneficial liaison?.

Nat Rev Clin Oncol. 14: 365-379

Whole body irradiation; radiobiology or medicine?.

Br J Radiol. 26: 234-241

The abscopal effect in malignant lymphoma and its relationship to lymphocyte circulation.

Radiology. 93: 410-412

Abscopal effect of radiation in papillary adenocarcinoma.

Br J Radiol. 46: 220-222

An interesting case of possible abscopal effect in malignant melanoma.

Br J Radiol. 48: 863-866

Demaria S., Ng B., Devitt M.L., et al., Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated, Int J Radiat Oncol Biol Phys, 58 (3), 2004, 862–870.

Postow M.A., Callahan M.K., Barker C.A., et al., Immunologic correlates of the abscopal effect in a patient with melanoma, N Engl J Med, 366 (10), 2012, 925–931.

Daly M.E. Monjazeb A.M. Kelly K.

Clinical trials integrating immunotherapy and radiation for non-small-cell lung cancer.

J Thorac Oncol. 10: 1685-1693

McBride S., Sherman E., Tsai C.J., et al., Randomized phase II trial of nivolumab with stereotactic body radiotherapy versus nivolumab alone in metastatic head and neck squamous cell carcinoma, J Clin Oncol, 39 (1), 2021, 30–37.

Schoenfeld J.D., Giobbie-Hurder A., Ranasinghe S., et al., Durvalumab plus tremelimumab alone or in combination with low-dose or hypofractionated radiotherapy in metastatic non-small-cell lung cancer refractory to previous PD(L)-1 therapy: an open-label, multicentre, randomised, phase 2 trial, Lancet Oncol, 23 (2), 2022, 279–291.

Pakkala S., Higgins K., Chen Z., et al., Durvalumab and tremelimumab with or without stereotactic body radiation therapy in relapsed small cell lung cancer: a randomized phase II study,Immunother Cancer, 8 (2), 2020, e001302, doi:10.1136/jitc-2020-001302.

Welsh J. Menon H. Chen D. et al.

Pembrolizumab with or without radiation therapy for metastatic non-small cell lung cancer: a randomized phase I/II trial.

J Immunother Cancer. 8e001001https://doi.org/10.1136/jitc-2020-001001

Theelen W., Chen D., Verma V., et al., Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: a pooled analysis of two randomised trials, Lancet Respir Med, 9 (5), 2021, 467–475.

Theelen W., Peulen H.M.U., Lalezari F., et al., effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT Phase 2 randomized clinical trial, JAMA Oncol, 5 (9), 2019, 1276–1282.

Immunity as a continuum of archetypes.

Science. 364: 28-29

Wells D.K., van Buuren MM., Dang K.K., et al., key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction, Cell, 183 (3), 2020, 818–834.e13.

Fuertes M.B., Kacha A.K., Kline J., et al., Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8+ dendritic cells, J Exp Med, 208 (10), 2011, 2005–2016.

Guillerme J.B. Boisgerault N. Roulois D. et al.

Measles virus vaccine-infected tumor cells induce tumor antigen cross-presentation by human plasmacytoid dendritic cells.

Clin Cancer Res. 19: 1147-1158Dunn G.P. Bruce A.T. Sheehan K.C.F. et al.

A critical function for type I interferons in cancer immunoediting.

Nat Immunol. 6: 722-729Dighe A.S. Richards E. Old L.J. et al.

Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFNγ receptors.

Immunity. 1: 447-456

Woo S.-R., Fuertes M.B., Corrales L., et al., STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors, Immunity, 41 (5), 2014, 830–842.

Kim Y. Lee J.H. Park J.E. et al.

PKR is activated by cellular dsRNAs during mitosis and acts as a mitotic regulator.

Genes Dev. 28: 1310-1322

Ahmad S., Mu X., Yang F., et al., Breaching self-tolerance to Alu Duplex RNA underlies MDA5-mediated inflammation, Cell, 172 (4), 2018, 797–810.e13.

Michallet M.C., Meylan E., Ermolaeva M.A., et al., TRADD protein is an essential component of the RIG-like helicase antiviral pathway, Immunity, 28 (5), 2008, 651–661.

Apetoh L., Ghiringhelli F., Tesniere A., et al., Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy, Nat Med, 13 (9), 2007, 1050–1059.

de Mingo Pulido Á., Gardner A., Hiebler S., et al., TIM-3 regulates CD103(+) dendritic cell function and response to chemotherapy in breast cancer, Cancer Cell, 33 (1), 2018, 60–74.e6.

Sharma M.D., Rodriguez P.C., Koehn B.H., et al., Activation of p53 in immature myeloid precursor cells controls differentiation into Ly6c(+)CD103(+) monocytic antigen-presenting cells in tumors, Immunity, 48 (1), 2018, 91–106.e6.

Böttcher J.P., Bonavita E., Chakravarty P., et al., NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control, Cell, 172 (5), 2018, 1022–1037.e14.

Barry K.C., Hsu J., Broz M.L., et al., A natural killer–dendritic cell axis defines checkpoint therapy–responsive tumor microenvironments, Nat Med, 24 (8), 2018, 1178–1191.

Ferris S.T., Durai V., Wu R., et al., cDC1 prime and are licensed by CD4(+) T cells to induce anti-tumour immunity, Nature, 584 (7822), 2020, 624–629.

Gabrilovich D.I. Nagaraj S.

Myeloid-derived suppressor cells as regulators of the immune system.

Nat Rev Immunol. 9: 162-174

Scharping N.E., Rivadeneira D.B., Menk A.V., et al., Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion, Nat Immunol, 22 (2), 2021, 205–215.

Martínez-Lostao L. Anel A. Pardo J.

how do cytotoxic lymphocytes kill cancer cells?.

Clin Cancer Res. 21: 5047-5056

Monjazeb A.M., Schalper K.A., Villarroel-Espindola F., et al., Effects of radiation on the tumor microenvironment, Semin Radiat Oncol, 30 (2), 2020, 145–157.

Burnette B.C. Liang H. Lee Y. et al.

The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity.

Cancer Res. 71: 2488-2496Vanpouille-Box C. Alard A. Aryankalayil M.J. et al.

DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity.

Nat Commun. 8: 15618Matsumura S. Wang B. Kawashima N. et al.

Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells.

J Immunol. 181: 3099-3107

Ganss R., Ryschich E., Klar E., et al., Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication, Cancer Res, 62 (5), 2002, 1462–1470.

Yoneyama M. Onomoto K. Jogi M. et al.

Viral RNA detection by RIG-I-like receptors.

Curr Opin Immunol. 32: 48-53Sharma A. Bode B. Studer G. et al.

Radiotherapy of human sarcoma promotes an intratumoral immune effector signature.

Clin Cancer Res. 19: 4843-4853

Reits E.A., Hodge J.M., Herberts C.A., et al., Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy, J Exp Med, 203 (5), 2006, 1259–1271.

Thust S.C. van den Bent M.J. Smits M.

Pseudoprogression of brain tumors.

J Magn Reson Imaging. 48: 571-589

Butner J.D., Elganainy D., Wang C.X., et al., Mathematical prediction of clinical outcomes in advanced cancer patients treated with checkpoint inhibitor immunotherapy, Sci Adv, 6 (18), 2020, eaay6298.

Chatterjee N. Walker G.C.

Mechanisms of DNA damage, repair, and mutagenesis.

Environ Mol Mutagen. 58: 235-263

Chae Y.K., Anker J.F., Oh M.S., et al., Mutations in DNA repair genes are associated with increased neoantigen burden and a distinct immunophenotype in lung squamous cell carcinoma, Sci Rep, 9 (1), 2019, 3235.

Lippert T.P. Greenberg R.A.

The abscopal effect: a sense of DNA damage is in the air.

J Clin Invest. 131van Rooij N. van Buuren M.M. Philips D. et al.

Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma.

J Clin Oncol. 31: e439-e442

Matsushita H., Vesely M.D., Koboldt D.C., et al., Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting, Nature, 482 (7385), 2012, 400–404.

Twyman-Saint Victor C., Rech A.J., Maity A., et al., Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer, Nature, 520 (7547), 2015, 373–377.

Monjazeb A.M., Giobbie-Hurder A., Lako A., et al., a randomized trial of combined PD-L1 and CTLA-4 inhibition with targeted low-dose or hypofractionated radiation for patients with metastatic colorectal cancer, Clin Cancer Res, 27 (9), 2021, 2470–2480.

Rudqvist N.P., Pilones K.A., Lhuillier C., et al., Radiotherapy and CTLA-4 blockade shape the TCR repertoire of tumor-infiltrating T cells, Cancer Immunol Res, 6 (2), 2018, 139–150.

Lu C., Guan J., Lu S., et al., DNA sensing in mismatch repair-deficient tumor cells is essential for anti-tumor immunity, Cancer Cell, 39 (1), 2021, 96–108.e6.

Roudko V., Bozkus C.C., Orfanelli T., et al., shared immunogenic poly-epitope frameshift mutations in microsatellite unstable tumors, Cell, 183 (6), 2020, 1634–1649.e17.

Monjazeb A.M., Michael S. Kent, Steven K. Grossenbacher, et al., Blocking indolamine-2,3-dioxygenase rebound immune suppression boosts antitumor effects of radio-immunotherapy in murine models and spontaneous canine malignancies, Clin Cancer Res, 22 (17), 2016, 4328–4340.

Li A., Barsoumian H.B., Schoenhals J.E., et al., ido1 inhibition overcomes radiation-induced “rebound immune suppression” by reducing numbers of IDO1-expressing myeloid-derived suppressor cells in the tumor microenvironment, Int J Radiat Oncol Biol Phys, 104 (4), 2019, 903–912.

Xu J. Escamilla J. Mok S. et al.

CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer.

Cancer Res. 73: 2782-2794Crittenden M.R. Baird J. Friedman D. et al.

Mertk on tumor macrophages is a therapeutic target to prevent tumor recurrence following radiation therapy.

Oncotarget. 7: 78653-78666Mira E. Carmona-Rodríguez L. Tardáguila M. et al.

A lovastatin-elicited genetic program inhibits M2 macrophage polarization and enhances T cell infiltration into spontaneous mouse mammary tumors.

Oncotarget. 4: 2288-2301Fadok V.A. Bratton D.L. Konowal A. et al.

Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF.

J Clin Invest. 101: 890-898Saccani A. Schioppa T. Porta C. et al.

p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance.

Cancer Res. 66: 11432-11440Deng L. Liang H. Burnette B. et al.

Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice.

J Clin Invest. 124: 687-695

Benci J.L., Johnson L.R., Choa R., et al., opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade, Cell, 178 (4), 2019, 933–948.e14.

Halle M. Gabrielsen A. Paulsson-Berne G. et al.

Sustained inflammation due to nuclear factor-kappa B activation in irradiated human arteries.

J Am Coll Cardiol. 55: 1227-1236

Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications.

Curr Med Chem. 16: 130-143Avraham T. Yan A. Zampell J.C. et al.

Radiation therapy causes loss of dermal lymphatic vessels and interferes with lymphatic function by TGF-β1-mediated tissue fibrosis.

Am J Physiol Cell Physiol. 299: C589-C605

Bakhoum S.F., Ngo B., Laughney A.M., et al., Chromosomal instability drives metastasis through a cytosolic DNA response, Nature, 553 (7689), 2018, 467–472.

Wang Z., Aguilar E.G., Luna J.I., et al., Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade, Nat Med, 25 (1), 2019, 141–151.

Demaria S., Guha C., Schoenfeld J., et al., Radiation dose and fraction in immunotherapy: one-size regimen does not fit all settings, so how does one choose?, J Immunother Cancer, 9 (4), 2021 Apr;9(4):e002038. doi: 10.1136/jitc-2020-002038.

Young K.H., Baird J.R., Savage T., et al., Optimizing timing of immunotherapy improves control of tumors by hypofractionated radiation therapy, PLoS One, 11 (6), 2016, e0157164.

Dovedi S.J. Adlard A.L. Lipowska-Bhalla G. et al.

Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade.

Cancer Res. 74: 5458-5468Dewan M.Z. Galloway A.E. Kawashima N. et al.

Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody.

Clin Cancer Res. 15: 5379-5388Lee Y. Auh S.L. Wang Y. et al.

Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment.

Blood. 114: 589-595Filatenkov A. Baker J. Mueller A.M.S. et al.

ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions.

Clin Cancer Res. 21: 3727-3739

Marconi R., Strolin S., Bossi G., et al., A meta-analysis of the abscopal effect in preclinical models: is the biologically effective dose a relevant physical trigger?, PLoS One, 12 (2), 2017, e0171559.

Venkatesulu B.P., Mallick S., Lin S.H., et al., A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors, Crit Rev Oncol Hematol, 123, 2018, 42–51.

Jin J.Y., Gu A., Wang W., et al., Ultra-high dose rate effect on circulating immune cells: a potential mechanism for FLASH effect?, Radiother Oncol, 149, 2020, 55–62.

Aliru M.L., Schoenhals J.E., Venkatesulu B.P., et al., Radiation therapy and immunotherapy: what is the optimal timing or sequencing?, Immunotherapy, 10 (4), 2018, 299–316.

Antonia S.J. Villegas A. Daniel D. et al.

Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer.

N Engl J Med. 377: 1919-1929

Kelly R.J., Ajani J.A., Kuzdzal J., et al., Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer, N Engl J Med, 384 (13), 2021, 1191–1203.

Rahma O.E., Yothers G., Hong T.S., et al., Use of Total neoadjuvant therapy for locally advanced rectal cancer: initial results from the pembrolizumab arm of a phase 2 randomized clinical trial, JAMA Oncol, 7 (8), 2021, 1225–1230.

Shamseddine A., Zeidan Y.H., El Husseini Z., et al., Efficacy and safety-in analysis of short-course radiation followed by mFOLFOX-6 plus avelumab for locally advanced rectal adenocarcinoma, Radiat Oncol, 15 (1), 2020, 233.

Chicas-Sett R., Morales-Orue I., Rodriguez-Abreu D., et al., Combining radiotherapy and ipilimumab induces clinically relevant radiation-induced abscopal effects in metastatic melanoma patients: a systematic review, Clin Transl Radiat Oncol, 9, 2018, 5–11.

Koller K.M. Mackley H.B. Liu J. et al.

Improved survival and complete response rates in patients with advanced melanoma treated with concurrent ipilimumab and radiotherapy versus ipilimumab alone.

Cancer Biol Ther. 18: 36-42Brody J.D. Ai W.Z. Czerwinski D.K. et al.

In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study.

J Clin Oncol. 28: 4324-4332

Curti B., Crittenden M., Seung S.K., et al., Randomized phase II study of stereotactic body radiotherapy and interleukin-2 versus interleukin-2 in patients with metastatic melanoma, J Immunother Cancer, 8 (1), 2020, 8(1):e000773. doi: 10.1136/jitc-2020-000773.

留言 (0)

沒有登入
gif