Advances in MRI-Guided Radiation Therapy

Hall W.A. Paulson E.S. van der Heide U.A. et al.

The transformation of radiation oncology using real-time magnetic resonance guidance: A review.

Eur J Cancer. 122: 42-52Noel C.E. Parikh P.J. Spencer C.R. et al.

Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy.

Acta Oncol. 54: 1474-1482Charters J.A. Abdulkadir Y. O'Connell D. et al.

Dosimetric evaluation of respiratory gating on a 0.35-T magnetic resonance-guided radiotherapy linac.

J Appl Clin Med Phys. 10: e13666Uijtewaal P. Borman P.T.S. Woodhead P.L. et al.

First experimental demonstration of VMAT combined with MLC tracking for single and multi fraction lung SBRT on an MR-linac.

Radiother Oncol. 174: 149-157Snyder J.E. Flynn R.T. Hyer D.E.

Implementation of respiratory-gated VMAT on a Versa HD linear accelerator.

J Appl Clin Med Phys. 18: 152-161Green O.L. Henke L.E. Hugo G.D.

Practical Clinical Workflows for Online and Offline Adaptive Radiation Therapy.

Semin Radiat Oncol. 29: 219-227Chin S. Eccles C.L. McWilliam A. et al.

Magnetic resonance-guided radiation therapy: A review.

J Med Imaging Radiat Oncol. 64: 163-177

Technical design and concept of a 0.35 T MR-Linac.

Clin Transl Radiat Oncol. 18: 98-101

The rotating biplanar linac-magnetic resonance imaging system.

Semin Radiat Oncol. 24: 200-202Raaymakers B.W. Lagendijk J.J. Overweg J. et al.

Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept.

Phys Med Biol. 54: N229-N237Keall P.J. Brighi C. Glide-Hurst C. et al.

Integrated MRI-guided radiotherapy - opportunities and challenges.

Nat Rev Clin Oncol. 19: 458-470Henke L.E. Olsen J.R. Contreras J.A. et al.

Stereotactic MR-Guided Online Adaptive Radiation Therapy (SMART) for Ultracentral Thorax Malignancies: Results of a Phase 1 Trial.

Adv Radiat Oncol. 4: 201-209Crockett C.B. Samson P. Chuter R. et al.

Initial Clinical Experience of MR-Guided Radiotherapy for Non-Small Cell Lung Cancer.

Front Oncol. 11: 617681Finazzi T. Palacios M.A. Haasbeek C.J.A. et al.

Stereotactic MR-guided adaptive radiation therapy for peripheral lung tumors.

Radiother Oncol. 144: 46-52Tjong M.C. Bitterman D.S. Brantley K. et al.

Major adverse cardiac event risk prediction model incorporating baseline Cardiac disease, Hypertension, and Logarithmic Left anterior descending coronary artery radiation dose in lung cancer (CHyLL).

Radiother Oncol. 169: 105-113Lindberg K. Grozman V. Karlsson K. et al.

The HILUS-Trial-a Prospective Nordic Multicenter Phase 2 Study of Ultracentral Lung Tumors Treated With Stereotactic Body Radiotherapy.

J Thorac Oncol. 16: 1200-1210Rosenberg S.A. Mak R. Kotecha R. et al.

The Nordic-HILUS Trial: Ultracentral Lung Stereotactic Ablative Radiotherapy and a Narrow Therapeutic Window.

J Thorac Oncol. 16: e79-e80Regnery S. Buchele C. Weykamp F. et al.

Adaptive MR-Guided Stereotactic Radiotherapy is Beneficial for Ablative Treatment of Lung Tumors in High-Risk Locations.

Front Oncol. 11: 757031Henke L. Kashani R. Robinson C. et al.

Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen.

Radiother Oncol. 126: 519-526Finazzi T. Haasbeek C.J.A. Spoelstra F.O.B. et al.

Clinical Outcomes of Stereotactic MR-Guided Adaptive Radiation Therapy for High-Risk Lung Tumors.

Int J Radiat Oncol Biol Phys. 107: 270-278Finazzi T. van Sornsen de Koste J.R. Palacios M.A. et al.

Delivery of magnetic resonance-guided single-fraction stereotactic lung radiotherapy.

Phys Imaging Radiat Oncol. 14: 17-23Chuong M.D. Kotecha R. Mehta M.P. et al.

Case report of visual biofeedback-driven, magnetic resonance-guided single-fraction SABR in breath hold for early stage non-small-cell lung cancer.

Med Dosim. Autumn. 46: 247-252Gomez D.R. Tang C. Zhang J. et al.

Local Consolidative Therapy Vs. Maintenance Therapy or Observation for Patients With Oligometastatic Non-Small-Cell Lung Cancer: Long-Term Results of a Multi-Institutional, Phase II, Randomized Study.

J Clin Oncol. 37: 1558-1565Siva S. Bressel M. Mai T. et al.

Single-Fraction vs Multifraction Stereotactic Ablative Body Radiotherapy for Pulmonary Oligometastases (SAFRON II): The Trans Tasman Radiation Oncology Group 13.01 Phase 2 Randomized Clinical Trial.

JAMA Oncol. 7: 1476-1485Robinson C.G. Samson P.P. Moore K.M.S. et al.

Phase I/II Trial of Electrophysiology-Guided Noninvasive Cardiac Radioablation for Ventricular Tachycardia.

Circulation. 139: 313-321Mayinger M. Kovacs B. Tanadini-Lang S. et al.

First magnetic resonance imaging-guided cardiac radioablation of sustained ventricular tachycardia.

Radiother Oncol. 152: 203-207Akdag O. Borman P.T.S. Woodhead P. et al.

First experimental exploration of real-time cardiorespiratory motion management for future stereotactic arrhythmia radioablation treatments on the MR-linac.

Phys Med Biol. 67https://doi.org/10.1088/1361-6560/ac5717Sjoquist K.M. Burmeister B.H. Smithers B.M. et al.

Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis.

Lancet Oncol. 12: 681-692Wang X. Palaskas N.L. Yusuf S.W. et al.

Incidence and Onset of Severe Cardiac Events After Radiotherapy for Esophageal Cancer.

J Thorac Oncol. 15: 1682-1690Pao T.H. Chang W.L. Chiang N.J. et al.

Cardiac radiation dose predicts survival in esophageal squamous cell carcinoma treated by definitive concurrent chemotherapy and intensity modulated radiotherapy.

Radiat Oncol. 15: 221Lee S.L. Bassetti M. Meijer G.J. et al.

Review of MR-Guided Radiotherapy for Esophageal Cancer.

Front Oncol. 11: 628009Lips I. Lever F. Reerink O. et al.

SU-E-J-57: MRI-Linac (MRL) Guided Treatment for Esophageal Cancer.

Med Phys. 39: 3665Lee S.L. Mahler P. Olson S. et al.

Reduction of cardiac dose using respiratory-gated MR-linac plans for gastro-esophageal junction cancer.

Med Dosim. Summer. 46: 152-156Boekhoff M.R. Bouwmans R. Doornaert P.A.H. et al.

Clinical implementation and feasibility of long-course fractionated MR-guided chemoradiotherapy for patients with esophageal cancer: An R-IDEAL stage 1b/2a evaluation of technical innovation.

Clin Transl Radiat Oncol. 34: 82-89van Rossum P.S. van Lier A.L. van Vulpen M. et al.

Diffusion-weighted magnetic resonance imaging for the prediction of pathologic response to neoadjuvant chemoradiotherapy in esophageal cancer.

Radiother Oncol. 115: 163-170Hulshof M. Geijsen E.D. Rozema T. et al.

Randomized Study on Dose Escalation in Definitive Chemoradiation for Patients With Locally Advanced Esophageal Cancer (ARTDECO Study).

J Clin Oncol. 39: 2816-2824Zhang W. Luo Y. Wang X. et al.

Dose-escalated radiotherapy improved survival for esophageal cancer patients with a clinical complete response after standard-dose radiotherapy with concurrent chemotherapy.

Cancer Manag Res. 10: 2675-2682Hoyer M. Swaminath A. Bydder S. et al.

Radiotherapy for liver metastases: a review of evidence.

Int J Radiat Oncol Biol Phys. 82: 1047-1057Witt J.S. Rosenberg S.A. Bassetti M.F.

MRI-guided adaptive radiotherapy for liver tumours: visualising the future.

Lancet Oncol. 21: e74-e82Feldman A.M. Modh A. Glide-Hurst C. et al.

Real-time Magnetic Resonance-guided Liver Stereotactic Body Radiation Therapy: An Institutional Report Using a Magnetic Resonance-Linac System.

Cureus. 11: e5774Boldrini L. Romano A. Mariani S. et al.

MRI-guided stereotactic radiation therapy for hepatocellular carcinoma: a feasible and safe innovative treatment approach.

J Cancer Res Clin Oncol. 147: 2057-2068Stanescu T. Shessel A. Carpino-Rocca C. et al.

MRI-Guided Online Adaptive Stereotactic Body Radiation Therapy of Liver and Pancreas Tumors on an MR-Linac System.

Cancers. 14https://doi.org/10.3390/cancers1403071Rosenberg S.A. Henke L.E. Shaverdian N. et al.

A Multi-Institutional Experience of MR-Guided Liver Stereotactic Body Radiation Therapy.

Adv Radiat Oncol. 4: 142-149van Dams R. Wu T.C. Kishan A.U. et al.

Ablative radiotherapy for liver tumors using stereotactic MRI-guidance: A prospective phase I trial.

Radiother Oncol. 170: 14-20Hoegen P. Zhang K.S. Tonndorf-Martini E. et al.

MR-guided adaptive versus ITV-based stereotactic body radiotherapy for hepatic metastases (MAESTRO): a randomized controlled phase II trial.

Radiat Oncol. 17: 59Dreher C. Linde P. Boda-Heggemann J. et al.

Radiomics for liver tumours.

Strahlenther Onkol. 196: 888-899Folkert M.R. Meyer J.J. Aguilera T.A. et al.

Long-Term Results of a Phase 1 Dose-Escalation Trial and Subsequent Institutional Experience of Single-Fraction Stereotactic Ablative Radiation Therapy for Liver Metastases.

Int J Radiat Oncol Biol Phys. 109: 1387-1395Mayinger M. Ludwig R. Christ S.M. et al.

Benefit of replanning in MR-guided online adaptive radiation therapy in the treatment of liver metastasis.

Radiat Oncol. 16: 84Hammel P. Huguet F. van Laethem J.L. et al.

Effect of Chemoradiotherapy vs Chemotherapy on Survival in Patients With Locally Advanced Pancreatic Cancer Controlled After 4 Months of Gemcitabine With or Without Erlotinib: The LAP07 Randomized Clinical Trial.

JAMA. 315: 1844-1853Krishnan S. Chadha A.S. Suh Y. et al.

Focal Radiation Therapy Dose Escalation Improves Overall Survival in Locally Advanced Pancreatic Cancer Patients Receiving Induction Chemotherapy and Consolidative Chemoradiation.

Int J Radiat Oncol Biol Phys. 94: 755-765Rudra S. Jiang N. Rosenberg S.A. et al.

Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer.

Cancer Med. 8: 2123-2132Hall W.A. Small C. Paulson E. et al.

Magnetic Resonance Guided Radiation Therapy for Pancreatic Adenocarcinoma, Advantages, Challenges, Current Approaches, and Future Directions.

Front Oncol. 11: 628155Hassanzadeh C. Rudra S. Bommireddy A. et al.

Ablative Five-Fraction Stereotactic Body Radiation Therapy for Inoperable Pancreatic Cancer Using Online MR-Guided Adaptation.

Advances in Radiation Oncology. 6: 100506Chuong M.D. Herrera R. Kaiser A. et al.

Induction Chemotherapy and Ablative Stereotactic Magnetic Resonance Image-Guided Adaptive Radiation Therapy for Inoperable Pancreas Cancer.

Front Oncol. 12: 888462Chuong M.D. Kharofa J. Sanford N.N.

Elective Target Coverage for Pancreatic Cancer: When Less Does Not Clearly Achieve More.

Int J Radiat Oncol Biol Phys. 112: 143-145Tyagi N. Liang J. Burleson S. et al.

Feasibility of ablative stereotactic body radiation therapy of pancreas cancer patients on a 1.5 Tesla magnetic resonance-linac system using abdominal compression.

Phys Imaging Radiat Oncol. 19: 53-59Iacobuzio-Donahue C.A. Fu B. Yachida S. et al.

DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer.

J Clin Oncol. 27: 1806-1813Chuong M.D. Herrera R. Ucar A. et al.

Causes of death among initially inoperable pancreas cancer patients after induction chemotherapy and ablative 5-fraction stereotactic magnetic resonance image-guided adaptive radiation therapy.

Advances in Radiation Oncology. 8: 101084Kim H. Olsen J.R. Green O.L. et al.

MR-Guided Radiation Therapy With Concurrent Gemcitabine/Nab-Paclitaxel Chemotherapy in Inoperable Pancreatic Cancer: A TITE-CRM Phase I Trial.

Int J Radiat Oncol Biol Phys. 115: 214-223Parikh P.J. Lee P. Low D. et al.

Stereotactic MR-Guided On-Table Adaptive Radiation Therapy (SMART) for Patients with Borderline or Locally Advanced Pancreatic Cancer: Primary Endpoint Outcomes of a Prospective Phase II Multi-Center International Trial.

Int J Radiat Oncol Biol Phys. 114: 1062-1063Burbach J.P. Kleijnen J.P. Reerink O. et al.

Inter-observer agreement of MRI-based tumor delineation for preoperative radiotherapy boost in locally advanced rectal cancer.

Radiother Oncol. 118: 399-407O'Neill B.D. Salerno G. Thomas K. et al.

MR vs CT imaging: low rectal cancer tumour delineation for three-dimensional conformal radiotherapy.

Br J Radiol. 82: 509-513Tan J. Lim Joon D. Fitt G. et al.

The utility of multimodality imaging with CT and MRI in defining rectal tumour volumes for radiotherapy treatment planning: a pilot study.

J Med Imaging Radiat Oncol. 54: 562-568Arias F. Eito C. Asin G. et al.

Fecal incontinence and radiation dose on anal sphincter in patients with locally advanced rectal cancer (LARC) treated with preoperative chemoradiotherapy: a retrospective, single-institutional study.

Clin Transl Oncol. 19: 969-975Kalisz K.R. Enzerra M.D. Paspulati R.M.

MRI Evaluation of the Response of Rectal Cancer to Neoadjuvant Chemoradiation Therapy.

Radiographics. 39: 538-556Kim S.H. Lee J.Y. Lee J.M. et al.

Apparent diffusion coefficient for evaluating tumour response to neoadjuvant chemoradiation therapy for locally advanced rectal cancer.

Eur Radiol. 21: 987-995Horvat N. Veeraraghavan H. Khan M. et al.

MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy.

Radiology. 287: 833-843Sun Y.S. Zhang X.P. Tang L. et al.

Locally advanced rectal carcinoma treated with preoperative chemotherapy and radiation therapy: preliminary analysis of diffusion-weighted MR imaging for early detection of tumor histopathologic downstaging.

Radiology. 254: 170-178Shaverdian N. Yang Y. Hu P. et al.

Feasibility evaluation of diffusion-weighted imaging using an integrated MRI-radiotherapy system for response assessment to neoadjuvant therapy in rectal cancer.

The Br J Radiol. 90: 20160739Nougaret S. Vargas H.A. Lakhman Y. et al.

Intravoxel Incoherent Motion-derived Histogram Metrics for Assessment of Response after Combined Chemotherapy and Radiation Therapy in Rectal Cancer: Initial Experience and Comparison between Single-Section and Volumetric Analyses.

Radiology. 280: 446-454Jeon S.H. Song C. Chie E.K. et al.

Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer.

Radiat Oncol. 14: 43Palmisano A. Esposito A. Rancoita P.M.V. et al.

Could perfusion heterogeneity at dynamic contrast-enhanced MRI be used to predict rectal cancer sensitivity to chemoradiotherapy?.

Clin Radiol. 73: 911 e1-e911 e7Lambregts D.M. Vandecaveye V. Barbaro B. et al.

Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study.

Ann Surg Oncol. 18: 2224-2231Lambregts D.M. Rao S.X. Sassen S. et al.

MRI and Diffusion-weighted MRI Volumetry for Identification of Complete Tumor Responders After Preoperative Chemoradiotherapy in Patients With Rectal Cancer: A Bi-institutional Validation Study.

Ann Surg. 262: 1034-1039Chiloiro G. Boldrini L. Meldolesi E. et al.

MR-guided radiotherapy in rectal cancer: First clinical experience of an innovative technology.

Clin Transl Radiat Oncol. 18: 80-86Boldrini L. Intven M. Bassetti M. et al.

MR-Guided Radiotherapy for Rectal Cancer: Current Perspective on Organ Preservation.

Front Oncol. 11: 619852Van den Begin R. Kleijnen J.P. Engels B. et al.

Tumor volume regression during preoperative chemoradiotherapy for rectal cancer: a prospective observational study with weekly MRI.

Acta Oncol. 57: 723-727Bonomo P. Lo Russo M. Nachbar M. et al.

1.5 T MR-linac planning study to compare two different strategies of rectal boost irradiation.

Clin Transl Radiat Oncol. 26: 86-91Passoni P. Fiorino C. Slim N. et al.

Feasibility of an adaptive strategy in preoperative radiochemotherapy for rectal cancer with image-guided tomotherapy: boosting the dose to the shrinking tumor.

Int J Radiat Oncol Biol Phys. 87: 67-72Hall W.A. Paulson E. Li X.A. et al.

Magnetic resonance linear accelerator technology and adaptive radiation therapy: An overview for clinicians.

CA Cancer J Clin. 72: 34-56Pathmanathan A.U. van As N.J. Kerkmeijer L.G.W. et al.

Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy: A "Game Changer" for Prostate Treatment?.

Int J Radiat Oncol Biol Phys. 100: 361-373

Planning target volumes for radiotherapy: how much margin is needed?.

Int J Radiat Oncol Biol Phys. 44: 1165-1170Willigenburg T. van der Velden J.M. Zachiu C. et al.

Accumulated bladder wall dose is correlated with patient-reported acute urinary toxicity in prostate cancer patients treated with stereotactic, daily adaptive MR-guided radiotherapy.

Radiother Oncol. 171: 182-188Mylona E. Acosta O. Lizee T. et al.

Voxel-Based Analysis for Identification of Urethrovesical Subregions Predicting Urinary Toxicity After Prostate Cancer Radiation Therapy.

Int J Radiat Oncol Biol Phys. 104: 343-354Alayed Y. Davidson M. Quon H. et al.

Dosimetric predictors of toxicity and quality of life following prostate stereotactic ablative radiotherapy.

Radiother Oncol. 144: 135-140Spratt D.E. Lee J.Y. Dess R.T. et al.

Vessel-sparing Radiotherapy for Localized Prostate Cancer to Preserve Erectile Function: A Single-arm Phase 2 Trial.

Eur Urol. 72: 617-624Dang A. Kupelian P.A. Cao M. et al.

Image-guided radiotherapy for prostate cancer.

Transl Androl Urol. 7: 308-320O'Neill A.G. Jain S. Hounsell A.R. et al.

Fiducial marker guided prostate radiotherapy: a review.

Br J Radiol. 89: 20160296Green O.L. Rankine L.J. Cai B. et al.

First clinical implementation of real-time, real anatomy tracking and radiation beam control.

Med Phys. https://doi.org/10.1002/mp.13002Pathmanathan A.U. Schmidt M.A. Brand D.H. et al.

Improving fiducial and prostate capsule visualization for radiotherapy planning using MRI.

J Appl Clin Med Phys. 20: 27-36Leeman J.E. Chen Y.H. Catalano P. et al.

Radiation Dose to the Intraprostatic Urethra Correlates Strongly With Urinary Toxicity After Prostate Stereotactic Body Radiation Therapy: A Combined Analysis of 23 Prospective Clinical Trials.

Int J Radiat Oncol Biol Phys. 112: 75-82Kishan A.U. Ma T.M. Lamb J.M. et al.

Magnetic Resonance Imaging-Guided vs Computed Tomography-Guided Stereotactic Body Radiotherapy for Prostate Cancer: The MIRAGE Randomized Clinical Trial.

JAMA Oncol. https://doi.org/10.1001/jamaoncol.2022.6558Yoon S. Cao M. Aghdam N. et al.

Prostate bed and organ-at-risk deformation: Prospective volumetric and dosimetric data from a phase II trial of stereotactic body radiotherapy after radical prostatectomy.

Radiother Oncol. 148: 44-50Ost P. De Meerleer G. De Gersem W. et al.

Analysis of prostate bed motion using daily cone-beam computed tomography during postprostatectomy radiotherapy.

Int J Radiat Oncol Biol Phys. 79: 188-194Cao M. Gao Y. Yoon S.M. et al.

Interfractional Geometric Variations and Dosimetric Benefits of Stereotactic MRI Guided Online Adaptive Radiotherapy (SMART) of Prostate Bed after Radical Prostatectomy: Post-Hoc Analysis of a Phase II Trial.

Cancers. 13https://doi.org/10.3390/cancers13112802Ma T.M. Ballas L.K. Wilhalme H. et al.

Quality-of-Life Outcomes and Toxicity Profile Among Patients with Localized Prostate Cancer After Radical Prostatectomy Treated With Stereotactic Body Radiation: The SCIMITAR Multi-Center Phase 2 Trial.

Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2022.08.041Kerkmeijer L.G.W. Kishan A.U. Tree A.C.

Magnetic Resonance Imaging-guided Adaptive Radiotherapy for Urological Cancers: What Urologists Should Know.

Eur Urol. 82: 149-151Hunt A. Hanson I. Dunlop A. et al.

Feasibility of magnetic resonance guided radiotherapy for the treatment of bladder cancer.

Clin Transl Radiat Oncol. 25: 46-51Hijab A. Tocco B. Hanson I. et al.

MR-Guided Adaptive Radiotherapy for Bladder Cancer.

Front Oncol. 11: 637591Siva S. Louie A.V. Warner A. et al.

Pooled analysis of stereotactic ablative radiotherapy for primary renal cell carcinoma: A report from the International Radiosurgery Oncology Consortium for Kidney (IROCK).

Cancer. 124: 934-942Tetar S.U. Bohoudi O. Senan S. et al.

The Role of Daily Adaptive Stereotactic MR-Guided Radiotherapy for Renal Cell Cancer.

Cancers. 12https://doi.org/10.3390/cancers12102763

留言 (0)

沒有登入
gif