Campylobacter concisus from chronic inflammatory bowel diseases stimulates IL-8 production in HT-29 cells

Liu F, Ma R, Wang Y, Zhang L. The clinical importance of Campylobacter concisus and other human hosted Campylobacter Species. Front Cell Infect Microbiol. 2018;8:243.

Article  PubMed  PubMed Central  Google Scholar 

Man SM, Kaakoush NO, Leach ST, Nahidi L, Lu HK, Norman J, et al. Host attachment, invasion, and stimulation of proinflammatory cytokines by campylobacter concisus and other non– Campylobacter jejuni Campylobacter species. J Infect Dis. 2010;202(12):1855–65.

Article  CAS  PubMed  Google Scholar 

Nielsen HL, Ejlertsen T, Engberg J, Nielsen H. High incidence of Campylobacter concisus in gastroenteritis in North Jutland, Denmark: a population-based study. Clin Microbiol Infect. 2013;19:445–50.

Article  CAS  PubMed  Google Scholar 

Nielsen HL, Engberg J, Ejlertsen T, Bücker R, Nielsen H. Short-term and medium-term clinical outcomes of Campylobacter concisus infection. Clin Microbiol Infect. 2012;18(11):E459.

Article  CAS  PubMed  Google Scholar 

Aagaard MEY, Kirk KF, Nielsen HL, Tarpgaard IH, Hansen JB, Nielsen H. Campylobacter concisus is prevalent in the gastrointestinal tract of patients with microscopic colitis. Scand J Gastroenterol. 2020;55:924–30.

Article  Google Scholar 

Nielsen HL, Dalager-Pedersen M, Nielsen H. High risk of microscopic colitis after Campylobacter concisus infection: population-based cohort study. Gut. 2020;69:1952–8.

Article  PubMed  Google Scholar 

Kirk KF, Nielsen HL, Thorlacius-Ussing O, Nielsen H. Optimized cultivation of Campylobacter concisus from gut mucosal biopsies in inflammatory bowel disease. Gut Pathog. 2016;8:27.

Article  PubMed  PubMed Central  Google Scholar 

Nielsen HL, Dalager-Pedersen M, Nielsen H. Risk of inflammatory bowel disease after Campylobacter jejuni and Campylobacter concisus infection: a population-based cohort study. Scand J Gastroenterol. 2019;54:265–72.

Article  PubMed  Google Scholar 

Costa D, Iraola G. Pathogenomics of emerging Campylobacter species. Clin Microbiol Rev. 2019;32:1–24.

Article  Google Scholar 

Kirk KF, Meric G, Nielsen HL, Pascoe B, Sheppard SK, Thorlacius-Ussing O, et al. Molecular epidemiology and comparative genomics of Campylobacter concisus strains from saliva, faeces and gut mucosal biopsies in inflammatory bowel disease. Sci Rep. 2018;8:1902.

Article  PubMed  PubMed Central  Google Scholar 

Istivan TS, Coloe PJ, Fry BN, Ward P, Smith SC. Characterization of a haemolytic phospholipase A2 activity in clinical isolates of Campylobacter concisus. J Med Microbiol. 2004;53(6):483–93.

Article  CAS  PubMed  Google Scholar 

Ismail Y, Lee H, Riordan SM, Grimm MC, Zhang L. The effects of oral and enteric campylobacter concisus strains on expression of TLR4, MD-2, TLR2, TLR5 and COX-2 in HT-29 cells. PLoS ONE. 2013;8:e56888.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daig R, Andus T, Aschenbrenner E, Falk W, Schölmerich J, Gross V. Increased interleukin 8 expression in the colon mucosa of patients with inflammatory bowel disease. Gut. 1996;38:216–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cotton JA, Platnich JM, Muruve DA, Jijon HB, Buret AG, Beck PL. Interleukin-8 in gastrointestinal inflammation and malignancy: induction and clinical consequences. Int J Interferon Cytokine Mediat Res. 2016;8:13–34.

CAS  Google Scholar 

Kalischuk LD, Inglis GD. Comparative genotypic and pathogenic examination of Campylobacter concisus isolates from diarrheic and non-diarrheic humans. BMC Microbiol. 2011;11:53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahendran V, Liu F, Riordan SM, Grimm MC, Tanaka MM, Zhang L. Examination of the effects of Campylobacter concisus zonula occludens toxin on intestinal epithelial cells and macrophages. Gut Pathog. 2016;8:18.

Article  PubMed  PubMed Central  Google Scholar 

Deshpande NP, Wilkins MR, Castaño-Rodríguez N, Bainbridge E, Sodhi N, Riordan SM, et al. Campylobacter concisus pathotypes induce distinct global responses in intestinal epithelial cells. Sci Rep. 2016;6:34288.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martínez-Maqueda D, Miralles B, Recio I, et al. HT29 cell line. In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, et al., editors. The impact of food bioactives on health: in vitro and ex vivo models. Springer International Publishing; 2015. p. 113–24.

Google Scholar 

McFarland J. No the nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J Am Med Assoc. 1907;49:1176–8.

Article  Google Scholar 

Davies E, Ebbesen M, Johansson C, Kaden R, Rautelin H. Genomic and phenotypic characterisation of Campylobacter jejuni isolates from a waterborne outbreak. Front Cell Infect Microbiol. 2020;10:594856.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peters S, Pascoe B, Wu Z, Bayliss SC, Zeng X, Edwinson A, et al. Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans. Commun Biol. 2021;4(1):1015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitsuyama K, Toyonaga A, Sasaki E, Watanabe K, Tateishi H, Nishiyama T, et al. IL-8 as an important chemoattractant for neutrophils in ulcerative colitis and Crohn’s disease. Clin Exp Immunol. 1994;96:432–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sorensen NB, Nielsen HL, Varming K, Nielsen H. Neutrophil activation by Campylobacter concisus. Gut Pathog. 2013;5:17.

Article  PubMed  PubMed Central  Google Scholar 

Miehlke S, Verhaegh B, Tontini GE, Madisch A, Langner C, Munch A. Microscopic colitis: pathophysiology and clinical management. Lancet Gastroenterol Hepatol. 2019;4:305–14.

Article  PubMed  Google Scholar 

Kumawat AK, Strid H, Tysk C, Bohr J, Hornquist EH. Microscopic colitis patients demonstrate a mixed Th17/Tc17 and Th1/Tc1 mucosal cytokine profile. Mol Immunol. 2013;55:355–64.

Article  CAS  PubMed  Google Scholar 

Tagkalidis PP, Gibson PR, Bhathal PS. Microscopic colitis demonstrates a T helper cell type 1 mucosal cytokine profile. J Clin Pathol. 2007;60:382–7.

Article  CAS  PubMed  Google Scholar 

Carrasco A, Esteve M, Salas A, Pedrosa E, Rosinach M, Aceituno M, et al. Immunological differences between lymphocytic and collagenous colitis. J Crohns Colitis. 2016;10:1055–66.

Article  PubMed  Google Scholar 

Gunaltay S, Kumawat AK, Nyhlin N, Bohr J, Tysk C, Hultgren O, et al. Enhanced levels of chemokines and their receptors in the colon of microscopic colitis patients indicate mixed immune cell recruitment. Mediators Inflamm. 2015;2015:132458.

Article  PubMed  PubMed Central  Google Scholar 

Dey I, Beck PL, Chadee K. Lymphocytic colitis is associated with increased pro-inflammatory cytokine profile and up regulation of prostaglandin receptor EP4. PLoS ONE. 2013;8:e61891.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif