The influence of plant extracts on viability of ST3 and ST7 subtypes of Blastocystis sp.

Bednarska M, Jankowska I, Pawelas A, Piwczyńska K, Bajer A, Wolska-Kuśnierz B, et al. Prevalence of Cryptosporidium, Blastocystis, and other opportunistic infections in patients with primary and acquired immunodeficiency. Parasitol Res. 2018;117:2869–79.

Article  PubMed  PubMed Central  Google Scholar 

Kosik-Bogacka D, Lepczyńska M, Kot K, Szkup M, Łanocha-Arendarczyk N, Dzika E, et al. Prevalence, subtypes and risk factors of Blastocystis spp. infection among pre- and perimenopausal women. BMC Infect Dis. 2021;21:1125.

Article  PubMed  PubMed Central  Google Scholar 

Rudzińska M, Sikorska K. Epidemiology of Blastocystis infection: a review of data from Poland in relation to other reports. Pathogens. 2023;12:1050. https://doi.org/10.3390/pathogens12081050.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rajamanikam A, Isa MNM, Samudi C, Devaraj S, Govind SK. Gut bacteria influence Blastocystis sp. phenotypes and may trigger pathogenicity. PLoS Negl Trop Dis. 2023;17: e0011170. https://doi.org/10.1371/journal.pntd.0011170.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coyle CM, Varughese J, Weiss LM, Tanowitz HB. Blastocystis: to treat or not to treat. Clin Infect Dis. 2012;54:105–10. https://doi.org/10.1093/cid/cir810.

Article  PubMed  Google Scholar 

Pavanelli MF, Kaneshima EN, Uda CF, Colli CM, Falavigna-Guilherm AL, Gomes ML. Pathogenicity of Blastocystis sp. to the gastrointestinal tract of mice: relationship between inoculum size and period of infection. Rev Inst Med Trop Sao Paulo. 2015;57:467–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elwakil HS, Hewedi IH. Pathogenic potential of Blastocystis hominis in laboratory mice. Parasitol Res. 2010;107:685–9.

Article  PubMed  Google Scholar 

Yason JA, Liang YR, Png CW, Zhang Y, Tan KSW. Interactions between a pathogenic subtype and gut microbiota: in vitro and in vivo studies. Microbiome. 2019;7:30.

Article  PubMed  PubMed Central  Google Scholar 

Stensvold CR, Clark CG. Current status of Blastocystis: a personal view. Parasitol Int. 2016;65:763–71. https://doi.org/10.1016/j.parint.2016.05.015.

Article  PubMed  Google Scholar 

Noël C, Dufernez F, Gerbod D, Edgcomb VP, Delgado-Viscogliosi P, Ho LC, et al. Molecular phylogenies of Blastocystis isolates from different hosts: implications for genetic diversity, identification of species, and zoonosis. J Clin Microbiol. 2005;43:348–55. https://doi.org/10.1128/JCM.43.1.348-355.2005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santin M, Figueiredo A, Molokin A, George NS, Köster PC, Dashti A, et al. Division of Blastocystis ST10 into three new subtypes: ST42-ST44. J Eukaryot Microbiol. 2024;71: e12998. https://doi.org/10.1111/jeu.12998.

Article  CAS  PubMed  Google Scholar 

Ali SH, Ismail MAM, El-Badry AA, Abu-Sarea EY, Dewidar AM, Hamdy DA. An association between Blastocystis subtypes and colorectal cancer patients: a significant different profile from non-cancer individuals. Acta Parasitol. 2022;67:752–63. https://doi.org/10.1007/s11686-021-00508-y.

Article  PubMed  PubMed Central  Google Scholar 

Alinaghizade A, Mirjalal H, Mohebal M, Stensvold CR, Rezaeian M. Inter- and intra-subtype variation of Blastocystis subtypes isolated from diarrheic and non-diarrheic patients in Iran. Infect Genet Evol. 2017;50:77–82. https://doi.org/10.1016/j.meegid.2017.02.016.

Article  CAS  PubMed  Google Scholar 

El-Saber Batiha G, Magdy Beshbishy A, Wasef LG, Elewa YHA, Al-Sagan AA, Abd El-Hack ME, et al. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): a review. Nutrients. 2020;12:872. https://doi.org/10.3390/nu12030872.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Popruk S, Adao DEV, Rivera WL. Epidemiology and subtype distribution of Blastocystis in humans: a review. Infect Genet Evol. 2021;95:105085. https://doi.org/10.1016/j.meegid.2021.105085.

Article  CAS  PubMed  Google Scholar 

Onyeagba RA, Ugbogu OC, Okeke CU, Iroakasi O. Studies on the antimicrobial effects of garlic (Allium sativum Linn), ginger (Zingiber officinale Roscoe) and lime (Citrus aurantifolia Linn). Afr J Biotechnol. 2004;3:552–4.

Article  Google Scholar 

Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15:73.

Article  PubMed  PubMed Central  Google Scholar 

El-Sayed NM, Masoud NG. Medicinal plants as natural anti-parasitic agents against Blastocystis species. Recent Adv Anti-Infect Drug Discov. 2023;18:2–15. https://doi.org/10.2174/27722434418666221124123445.

Article  CAS  Google Scholar 

Lepczyńska M, Białkowska J, Dzika E, Piskorz-Ogórek K, Korycińska J. Blastocystis: how do specific diets and human gut microbiota affect its development and pathogenicity? Eur J Clin Microbiol Infect Dis. 2017;36:1531–40.

Article  PubMed  PubMed Central  Google Scholar 

Londhe VP, Gavasane AT, Nipate SS, Bandawane DD, Chaudhari PD. Role of garlic (Allium sativum) in various diseases: an overview. Angiogenesis. 2011;12:13.

Google Scholar 

Rouf R, Uddin SJ, Sarker DK, Islam MT, Ali ES, Shilpi JA, et al. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: a systematic update of pre-clinical and clinical data. Trends Food Sci Technol. 2020;104:219–34. https://doi.org/10.1016/j.tifs.2020.08.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alnomasy SF. In vitro and in vivo anti-Toxoplasma effects of Allium sativum essential oil against Toxoplasma gondii RH strain. Infect Drug Resist. 2021;14:5057–68. https://doi.org/10.2147/IDR.S337905.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azadbakht M, Chabra A, Akbarabadi AS, Motazedian MH, Monadi T, Akbari F. Anti-parasitic activity of some medicinal plants essential oils on Giardia lamblia and Entamoeba histolytica, in vitro. Res J Pharmacogn. 2020;7:41–7. https://doi.org/10.22127/RJP.2019.168142.1462.

Article  Google Scholar 

Hamdy DA, Ismail MAM, El-Askary HM, Abdel-Tawab H, Ahmed MM, Fouad FM, et al. Newly fabricated zinc oxide nanoparticles loaded materials for therapeutic nano delivery in experimental cryptosporidiosis. Sci Rep. 2023;13:19650. https://doi.org/10.1038/s41598-023-46260-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kinuthia G, Kabiru EW, Anjili C, Kigondu E, Ngure V, Ingonga J, et al. Efficacy of crude methanolic extracts of Allium sativum L. and Moringa stenopetala (Baker f) Cufod. against Leishmania major. Int J Med Arom Plants. 2014;4:16–25.

Google Scholar 

Krstin S, Sobeh M, Braun MS, Wink M. Anti-parasitic activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae. Medicines. 2018;5:37. https://doi.org/10.3390/medicines5020037.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahmoudvand H, Sepahvand P, Jahanbakhsh S, Azadpour M. Evaluation of the antileishmanial and cytotoxic effects of various extracts of garlic (Allium sativum) on Leishmania tropica. J Parasit Dis. 2016;40:423–6. https://doi.org/10.1007/s12639-014-0520-9.

Article  PubMed  Google Scholar 

Vathsala PG, Krishna MP. Immunomodulatory and antiparasitic effects of garlic-arteether combination via nitric oxide pathway in Plasmodium berghei-infected mice. J Parasit Dis. 2020;44:49–61. https://doi.org/10.1007/s12639-019-01160-0.

Article  CAS  PubMed  Google Scholar 

Bhatwalkar SB, Mondal R, Krishna SBN, Adam JK, Govender P, Anupam R. Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Front Microbiol. 2021;12:613077. https://doi.org/10.3389/fmicb.2021.613077.

Article  PubMed  PubMed Central  Google Scholar 

Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol. 2008;46:409–20.

Article  CAS  PubMed  Google Scholar 

Abd El Wahab WM, El-Badry AA, Mahmoud SS, El-Badry YA, El-Badry MA, Hamdy DA. Ginger (Zingiber officinale)-derived nanoparticles in Schistosoma mansoni infected mice: hepatoprotective and enhancer of etiological treatment. PLoS Negl Trop Dis. 2021;15: e0009423. https://doi.org/10.1371/journal.pntd.0009423.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Sayed NM, El-Saka MM. Anti-parasitic activity of Zingiber officinale (ginger): a brief review. Aperito J Bacteriol Virol Parasitol. 2015;2:112–9.

Google Scholar 

El-Sayed NM, Safar EH. A brief insight on anti Toxoplasma gondii activity of some medicinal plants. Aperito J Bacteriol Virol Parasitol. 2014;1:107.

Google Scholar 

Ballester P, Cerdá B, Arcusa R, Marhuenda J, Yamedjeu K, Zafrilla P. Effect of ginger on inflammatory diseases. Molecules. 2022;27:7223. https://doi.org/10.3390/molecules27217223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandáková T, Lysak MA. Healthy roots and leaves: comparative genome structure of horseradish and watercress. Plant Physiol. 2019;179:66–73.

Article 

留言 (0)

沒有登入
gif