Invasion of intestinal cells by Staphylococcus warneri, a member of the human gut microbiota

Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8): e1002533.

Google Scholar 

Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015;17(3):173–83.

CAS  Google Scholar 

Doran KS, Banerjee A, Disson O, Lecuit M. Concepts and mechanisms: crossing host barriers. Cold Spring Harb Perspect Med. 2013;3(7):a010090.

Google Scholar 

Casadevall A. The pathogenic potential of a microbe. mSphere. 2017;2(1):e00015.

Google Scholar 

Jochum L, Stecher B. Label or concept—what is a pathobiont? Trends Microbiol. 2020;28(10):789–92.

CAS  Google Scholar 

Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014;27(4):870–926.

Google Scholar 

Luqman A, Nega M, Nguyen MT, Ebner P, Gotz F. SadA-expressing Staphylococci in the human gut show increased cell adherence and internalization. Cell Rep. 2018;22(2):535–45.

CAS  Google Scholar 

Khalil H, Williams RJ, Stenbeck G, Henderson B, Meghji S, Nair SP. Invasion of bone cells by Staphylococcus epidermidis. Microbes Infect. 2007;9(4):460–5.

CAS  Google Scholar 

Hirschhausen N, Schlesier T, Schmidt MA, Gotz F, Peters G, Heilmann C. A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. Cell Microbiol. 2010;12(12):1746–64.

CAS  Google Scholar 

Valour F, Trouillet-Assant S, Rasigade JP, Lustig S, Chanard E, Meugnier H, et al. Staphylococcus epidermidis in orthopedic device infections: the role of bacterial internalization in human osteoblasts and biofilm formation. PLoS ONE. 2013;8(6): e67240.

CAS  Google Scholar 

Campoccia D, Montanaro L, Ravaioli S, Cangini I, Testoni F, Visai L, et al. New parameters to quantitatively express the invasiveness of bacterial strains from implant-related orthopaedic infections into osteoblast cells. Materials. 2018;11(4):550.

Google Scholar 

Savey A, Fleurette J, Salle BL. An analysis of the microbial flora of premature neonates. J Hosp Infect. 1992;21(4):275–89.

CAS  Google Scholar 

Dominguez E, Zarazaga M, Torres C. Antibiotic resistance in Staphylococcus isolates obtained from fecal samples of healthy children. J Clin Microbiol. 2002;40(7):2638–41.

CAS  Google Scholar 

Sanchez E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal Staphylococcus spp. and virulent features associated with coeliac disease. J Clin Pathol. 2012;65(9):830–4.

CAS  Google Scholar 

Hira V, Kornelisse RF, Sluijter M, Kamerbeek A, Goessens WH, de Groot R, et al. Colonization dynamics of antibiotic-resistant coagulase-negative Staphylococci in neonates. J Clin Microbiol. 2013;51(2):595–7.

CAS  Google Scholar 

Aujoulat F, Roudiere L, Picaud JC, Jacquot A, Filleron A, Neveu D, et al. Temporal dynamics of the very premature infant gut dominant microbiota. BMC Microbiol. 2014;14:325.

Google Scholar 

Golinska E, Strus M, Tomusiak-Plebanek A, Wiecek G, Kozien L, Lauterbach R, et al. Coagulase-negative Staphylococci contained in gut microbiota as a primary source of sepsis in low- and very low birth weight neonates. J Clin Med. 2020;9(8):2517.

CAS  Google Scholar 

Poyart C, Quesne G, Boumaila C, Trieu-Cuot P. Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J Clin Microbiol. 2001;39(12):4296–301.

CAS  Google Scholar 

Elsinghorst EA. Measurement of invasion by gentamicin resistance. Methods Enzymol. 1994;236:405–20.

CAS  Google Scholar 

Isberg RR, Voorhis DL, Falkow S. Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell. 1987;50(5):769–78.

CAS  Google Scholar 

Bianchi F, van den Bogaart G. Vacuolar escape of foodborne bacterial pathogens. J Cell Sci. 2020;134(5):jcs247221.

Google Scholar 

Kloos WE, Schleifer KH. Isolation and Characterization of Staphylococci from Human Skin II. Descriptions of Four New Species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int J Syst Bacteriol. 1975;25:62–79.

CAS  Google Scholar 

Foster TJ, Geoghegan JA, Ganesh VK, Hook M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49–62.

CAS  Google Scholar 

Carabeo R. Bacterial subversion of host actin dynamics at the plasma membrane. Cell Microbiol. 2011;13(10):1460–9.

CAS  Google Scholar 

Wiedemann A, Linder S, Grassl G, Albert M, Autenrieth I, Aepfelbacher M. Yersinia enterocolitica invasin triggers phagocytosis via beta1 integrins, CDC42Hs and WASp in macrophages. Cell Microbiol. 2001;3(10):693–702.

CAS  Google Scholar 

Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, Raisen C, et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 2012;8(10): e1002995.

CAS  Google Scholar 

Liu C, Zhou N, Du MX, Sun YT, Wang K, Wang YJ, et al. The mouse gut microbial Biobank expands the coverage of cultured bacteria. Nat Commun. 2020;11(1):79.

CAS  Google Scholar 

Kmet V, Cuvalova A, Stanko M. Small mammals as sentinels of antimicrobial-resistant staphylococci. Folia Microbiol. 2018;63(5):665–8.

CAS  Google Scholar 

Bino E, Laukova A, Scerbova J, Kubasova I, Kandricakova A, Strompfova V, et al. Fecal coagulase-negative staphylococci from horses, their species variability, and biofilm formation. Folia Microbiol. 2019;64(6):719–26.

CAS  Google Scholar 

Laukova A, Bino E, Kubasova I, Strompfova V, Miltko R, Belzecki G, et al. Characterisation of faecal Staphylococci from Roe Deer (Capreolus capreolus) and Red Deer (Cervus elaphus) and their susceptibility to Gallidermin. Probiotics Antimicrob Proteins. 2020;12(1):302–10.

CAS  Google Scholar 

Josse J, Laurent F, Diot A. Staphylococcal adhesion and host cell invasion: fibronectin-binding and other mechanisms. Front Microbiol. 2017;8:2433.

Google Scholar 

Pereira EM, Teixeira CAA, Alvarenga ALM, Schuenck RP, Giambiagi-deMarval M, Holandino C, et al. A Brazilian lineage of Staphylococcus lugdunensis presenting rough colony morphology may adhere to and invade lung epithelial cells. J Med Microbiol. 2012;61(Pt 4):463–9.

CAS  Google Scholar 

Hussain M, Steinbacher T, Peters G, Heilmann C, Becker K. The adhesive properties of the Staphylococcus lugdunensis multifunctional autolysin AtlL and its role in biofilm formation and internalization. Int J Med Microbiol. 2015;305(1):129–39.

CAS  Google Scholar 

Szabados F, Kleine B, Anders A, Kaase M, Sakinc T, Schmitz I, et al. Staphylococcus saprophyticus ATCC 15305 is internalized into human urinary bladder carcinoma cell line 5637. FEMS Microbiol Lett. 2008;285(2):163–9.

CAS  Google Scholar 

Szabados F, Albrecht A, Kleine B, Kaase M, Gatermann S. In contrast to human isolates animal isolates of S. saprophyticus subsp. saprophyticus are not internalized into human urinary bladder carcinoma cell line 5637. Vet Microbiol. 2009;139(3–4):417–8.

Google Scholar 

Maali Y, Martins-Simoes P, Valour F, Bouvard D, Rasigade JP, Bes M, et al. Pathophysiological mechanisms of Staphylococcus non-aureus bone and joint infection: interspecies homogeneity and specific behavior of S. pseudintermedius. Front Microbiol. 2016;7:1063.

Google Scholar 

Maali Y, Diot A, Martins-Simoes P, Bes M, Bouvard D, Vandenesch F, et al. Identification and characterization of Staphylococcus delphini internalization pathway in nonprofessional phagocytic cells. Infect Immun. 2020;88(5):e00002.

CAS  Google Scholar 

Soeorg H, Huik K, Parm U, Ilmoja ML, Metelskaja N, Metsvaht T, et al. Genetic relatedness of coagulase-negative Staphylococci from gastrointestinal tract and blood of preterm neonates with late-onset sepsis. Pediatr Infect Dis J. 2013;32(4):389–93.

Google Scholar 

Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, Bhatt AS. Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat Med. 2018;24(12):1809–14.

CAS  Google Scholar 

Tirelle P, Breton J, Riou G, Dechelotte P, Coeffier M, Ribet D. Comparison of different modes of antibiotic delivery on gut microbiota depletion efficiency and body composition in mouse. BMC Microbiol. 2020;20(1):340.

CAS  Google Scholar 

Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol. 2005;71(7):4117–20.

CAS  Google Scholar 

留言 (0)

沒有登入
gif