Distinct subcellular localisation of intramyocellular lipids and reduced PKCε/PKCθ activity preserve muscle insulin sensitivity in exercise-trained mice

Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98(4):2133–2223. https://doi.org/10.1152/physrev.00063.2017

Article  PubMed  PubMed Central  CAS  Google Scholar 

Laurens C, Moro C (2016) Intramyocellular fat storage in metabolic diseases. Horm Mol Biol Clin Investig 26(1):43–52. https://doi.org/10.1515/hmbci-2015-0045

Article  PubMed  CAS  Google Scholar 

Shulman GI (2014) Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med 371(12):1131–1141. https://doi.org/10.1056/nejmra1011035

Article  PubMed  Google Scholar 

Weiss R, Dufour S, Taksali SE et al (2003) Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet 362(9388):951–957. https://doi.org/10.1016/S0140-6736(03)14364-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Krssak M, Falk Petersen K, Dresner A et al (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1 H NMR spectroscopy study. Diabetologia 42(1):113–116. https://doi.org/10.1007/s001250051123

Article  PubMed  CAS  Google Scholar 

Dresner A, Laurent D, Marcucci M et al (1999) Effects of free fatty acids on glucose transport and IRS-1–associated phosphatidylinositol 3-kinase activity. J Clin Invest 103(2):253–259. https://doi.org/10.1172/JCI5001

Article  PubMed  PubMed Central  CAS  Google Scholar 

Daemen S, Gemmink A, Brouwers B et al (2018) Distinct lipid droplet characteristics and distribution unmask the apparent contradiction of the athlete’s paradox. Mol Metab 17:71–81. https://doi.org/10.1016/j.molmet.2018.08.004

Article  PubMed  PubMed Central  CAS  Google Scholar 

Perreault L, Newsom SA, Strauss A et al (2018) Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle. JCI Insight 3(3):e96805. https://doi.org/10.1172/jci.insight.96805

Article  PubMed  PubMed Central  Google Scholar 

Petersen MC, Shulman GI (2017) Roles of diacylglycerols and ceramides in hepatic insulin resistance. Trends Pharmacol Sci 38(7):649–665. https://doi.org/10.1016/j.tips.2017.04.004

Article  PubMed  PubMed Central  CAS  Google Scholar 

Batista TM, Haider N, Kahn CR (2021) Defining the underlying defect in insulin action in type 2 diabetes. Diabetologia 64(5):994–1006. https://doi.org/10.1007/s00125-021-05415-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

White MF, Kahn CR (2021) Insulin action at a molecular level – 100 years of progress. Mol Metab 52(July):101304. https://doi.org/10.1016/j.molmet.2021.101304

Article  PubMed  PubMed Central  CAS  Google Scholar 

Roden M, Shulman GI (2019) The integrative biology of type 2 diabetes. Nature 576(7785):51–60. https://doi.org/10.1038/s41586-019-1797-8

Article  PubMed  CAS  Google Scholar 

Szendroedi J, Yoshimura T, Phielix E et al (2014) Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci 111(26):9597–9602. https://doi.org/10.1073/pnas.1409229111

Article  PubMed  PubMed Central  CAS  Google Scholar 

Song JD, Alves TC, Befroy DE et al (2020) Dissociation of muscle insulin resistance from alterations in mitochondrial substrate preference. Cell Metab 32(5):726–735.e5. https://doi.org/10.1016/j.cmet.2020.09.008

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li Y, Soos TJ, Li X et al (2004) Protein kinase C θ inhibits insulin signaling by phosphorylating IRS1 at Ser1101. J Biol Chem 279(44):45304–45307. https://doi.org/10.1074/jbc.C400186200

Article  PubMed  CAS  Google Scholar 

Itani SI, Pories WJ, MacDonald KG, Dohm GL (2001) Increased protein kinase C theta in skeletal muscle of diabetic patients. Metabolism 50(5):553–557. https://doi.org/10.1053/meta.2001.22512

Article  PubMed  CAS  Google Scholar 

Griffin ME, Marcucci MJ, Cline GW et al (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C θ and alterations in the insulin signaling cascade. Diabetes 48(6):1270–1274. https://doi.org/10.2337/diabetes.48.6.1270

Article  PubMed  CAS  Google Scholar 

Lyu K, Zhang D, Song J et al (2021) Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol/PKCε/insulin receptor Thr1160 phosphorylation. JCI insight 6(4):e139946. https://doi.org/10.1172/jci.insight.139946

Article  PubMed  PubMed Central  Google Scholar 

Lyu K, Zhang Y, Zhang D et al (2020) A membrane-bound diacylglycerol species induces PKCϵ-mediated hepatic insulin resistance. Cell Metab 32(4):654–664.e5. https://doi.org/10.1016/j.cmet.2020.08.001

Article  PubMed  PubMed Central  CAS  Google Scholar 

Camporez JP, Lyu K, Goldberg EL et al (2019) Anti-inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid-induced insulin resistance. J Physiol 597(15):3885–3903. https://doi.org/10.1113/JP277270

Article  PubMed  CAS  Google Scholar 

Kim JK (2009) Hyperinsulinemic–euglycemic clamp to assess insulin sensitivity in vivo. In: Stocker C (ed) Type 2 diabetes methods and protocols. Humana Press, New Jersey, pp 221–238

Google Scholar 

Kim JK, Fillmore JJ, Sunshine MJ et al (2004) PKC-θ knockout mice are protected from fat-induced insulin resistance. J Clin Invest 114(6):823–827. https://doi.org/10.1172/JCI200422230

Article  PubMed  PubMed Central  CAS  Google Scholar 

Perry RJ, Wang Y, Cline GW et al (2018) Leptin mediates a glucose-fatty acid cycle to maintain glucose homeostasis in starvation. Cell 172(1–2):234–248.e17. https://doi.org/10.1016/j.cell.2017.12.001

Article  PubMed  PubMed Central  CAS  Google Scholar 

Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86(12):5755–5761. https://doi.org/10.1210/jcem.86.12.8075

Article  PubMed  CAS  Google Scholar 

Amati F, Dubé JJ, Alvarez-Carnero E et al (2011) Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance. Diabetes 60(10):2588–2597. https://doi.org/10.2337/db10-1221

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li X, Li Z, Zhao M et al (2019) Skeletal muscle lipid droplets and the athlete’s paradox. Cells 8(3):249. https://doi.org/10.3390/cells8030249

Article  PubMed  PubMed Central  CAS  Google Scholar 

Boni LT, Rando RR (1985) The nature of protein kinase C activation by physically defined phospholipid vesicles and diacylglycerols. J Biol Chem 260(19):10819–10825. https://doi.org/10.1016/S0021-9258(19)85156-6

Article  PubMed  CAS  Google Scholar 

Rando RR, Young N (1984) The stereospecific activation of protein kinase C. Biochem Biophys Res Commun 122(2):818–823. https://doi.org/10.1016/S0006-291X(84)80107-2

Article  PubMed  CAS  Google Scholar 

Sarabhai T, Koliaki C, Mastrototaro L et al (2022) Dietary palmitate and oleate differently modulate insulin sensitivity in human skeletal muscle. Diabetologia 65(2):301–314. https://doi.org/10.1007/s00125-021-05596-z

Article  PubMed  CAS  Google Scholar 

Jani S, Da Eira D, Hadday I et al (2021) Distinct mechanisms involving diacylglycerol, ceramides, and inflammation underlie insulin resistance in oxidative and glycolytic muscles from high fat-fed rats. Sci Rep 11(1):19160. https://doi.org/10.1038/s41598-021-98819-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Eichmann TO, Kumari M, Haas JT et al (2012) Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J Biol Chem 287(49):41446–41457. https://doi.org/10.1074/jbc.M112.400416

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu L, Zhang Y, Chen N, Shi X, Tsang B, Yu YH (2007) Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J Clin Invest 117(6):1679–1689. https://doi.org/10.1172/JCI30565

Article  PubMed  PubMed Central  CAS  Google Scholar 

Morton TL, Galior K, McGrath C et al (2016) Exercise increases and browns muscle lipid in high-fat diet-fed mice. Front Endocrinol (Lausanne) 7:1–8. https://doi.org/10.3389/fendo.2016.00080

Article  Google Scholar 

Levin MC, Monetti M, Watt MJ et al (2007) Increased lipid accumulation and insulin resistance in transgenic mice expressing DGAT2 in glycolytic (type II) muscle. Am J Physiol Metab 293(6):E1772–E1781. https://doi.org/10.1152/ajpendo.00158.2007

Article  CAS 

留言 (0)

沒有登入
gif