Harnessing the power of proteomics in precision diabetes medicine

Diamanti K, Cavalli M, Pereira MJ et al (2022) Organ-specific metabolic pathways distinguish prediabetes, type 2 diabetes, and normal tissues. Cell Rep Med 3(10):100763. https://doi.org/10.1016/j.xcrm.2022.100763

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson JD (2021) On the causal relationships between hyperinsulinaemia, insulin resistance, obesity and dysglycaemia in type 2 diabetes. Diabetologia 64(10):2138–2146. https://doi.org/10.1007/s00125-021-05505-4

Article  CAS  PubMed  Google Scholar 

McCarthy MI (2017) Painting a new picture of personalised medicine for diabetes. Diabetologia 60(5):793–799. https://doi.org/10.1007/s00125-017-4210-x

Article  PubMed  PubMed Central  Google Scholar 

Allesøe RL, Lundgaard AT, Hernández Medina R et al (2023) Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models. Nat Biotechnol 41(3):399–408. https://doi.org/10.1038/s41587-022-01520-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung WK, Erion K, Florez JC et al (2020) Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 63(9):1671–1693. https://doi.org/10.1007/s00125-020-05181-w

Article  PubMed  PubMed Central  Google Scholar 

Tobias DK, Merino J, Ahmad A et al (2023) Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine. Nat Med 29(10):2438–2457. https://doi.org/10.1038/s41591-023-02502-5

Article  CAS  PubMed  Google Scholar 

O’Neil PM, Birkenfeld AL, McGowan B et al (2018) Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet 392(10148):637–649. https://doi.org/10.1016/S0140-6736(18)31773-2

Article  CAS  PubMed  Google Scholar 

Xia L, Shen T, Dong W et al (2021) Comparative efficacy and safety of 8 GLP-1RAs in patients with type 2 diabetes: a network meta-analysis. Diabetes Res Clin Pract 177:108904. https://doi.org/10.1016/j.diabres.2021.108904

Article  CAS  PubMed  Google Scholar 

Huthmacher JA, Meier JJ, Nauck MA (2020) Efficacy and safety of short- and long-acting glucagon-like peptide 1 receptor agonists on a background of basal insulin in type 2 diabetes: a meta-analysis. Diabetes Care 43(9):2303–2312. https://doi.org/10.2337/dc20-0498%JDiabetesCare

Article  CAS  PubMed  Google Scholar 

Bergman M, Buysschaert M, Ceriello A et al (2023) Current diagnostic criteria identify risk for type 2 diabetes too late. Lancet Diabetes Endocrinol 11(4):224–226. https://doi.org/10.1016/s2213-8587(23)00039-6

Article  CAS  PubMed  Google Scholar 

Udler MS, Kim J, von Grotthuss M et al (2018) Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med 15(9):e1002654. https://doi.org/10.1371/journal.pmed.1002654

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahlqvist E, Storm P, Käräjämäki A et al (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 6(5):361–369. https://doi.org/10.1016/s2213-8587(18)30051-2

Article  PubMed  Google Scholar 

Schrader S, Perfilyev A, Ahlqvist E et al (2022) Novel subgroups of type 2 diabetes display different epigenetic patterns that associate with future diabetic complications. Diabetes Care 45(7):1621–1630. https://doi.org/10.2337/dc21-2489%JDiabetesCare

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Klerk JA, Beulens JWJ, Mei H et al (2023) Altered blood gene expression in the obesity-related type 2 diabetes cluster may be causally involved in lipid metabolism: a Mendelian randomisation study. Diabetologia 66(6):1057–1070. https://doi.org/10.1007/s00125-023-05886-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slieker RC, Donnelly LA, Fitipaldi H et al (2021) Distinct molecular signatures of clinical clusters in people with type 2 diabetes: an IMI-RHAPSODY study. Diabetes 70(11):2683–2693. https://doi.org/10.2337/db20-1281

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herder C, Maalmi H, Strassburger K et al (2021) Differences in biomarkers of inflammation between novel subgroups of recent-onset diabetes. Diabetes 70(5):1198–1208. https://doi.org/10.2337/db20-1054

Article  CAS  PubMed  Google Scholar 

Pigeyre M, Gerstein H, Ahlqvist E, Hess S, Paré G (2023) Identifying blood biomarkers for type 2 diabetes subtyping: a report from the ORIGIN trial. Diabetologia 66(6):1045–1051. https://doi.org/10.1007/s00125-023-05887-7

Article  CAS  PubMed  Google Scholar 

Zaghlool SB, Halama A, Stephan N et al (2022) Metabolic and proteomic signatures of type 2 diabetes subtypes in an Arab population. Nat Commun 13(1):7121. https://doi.org/10.1038/s41467-022-34754-z

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Wang G, Chiou J, Zeng C et al (2023) Integration of single-cell multiomic measurements across disease states with genetics identifies mechanisms of beta cell dysfunction in type 2 diabetes. 2022.2012.2031.522386. https://doi.org/10.1101/2022.12.31.522386%JbioRxiv

Bader JM, Albrecht V, Mann M (2023) MS-based proteomics of body fluids: the end of the beginning. Mol Cell Proteom 22(7):100577. https://doi.org/10.1016/j.mcpro.2023.100577

Article  CAS  Google Scholar 

Yanovich G, Agmon H, Harel M, Sonnenblick A, Peretz T, Geiger T (2018) Clinical proteomics of breast cancer reveals a novel layer of breast cancer classification. Cancer Res 78(20):6001–6010. https://doi.org/10.1158/0008-5472.Can-18-1079

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tyanova S, Albrechtsen R, Kronqvist P, Cox J, Mann M, Geiger T (2016) Proteomic maps of breast cancer subtypes. Nat Commun 7:10259. https://doi.org/10.1038/ncomms10259

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Slieker RC, Donnelly LA, Akalestou E et al (2023) Identification of biomarkers for glycaemic deterioration in type 2 diabetes. Nat Commun 14(1):2533. https://doi.org/10.1038/s41467-023-38148-7

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Sun BB, Chiou J, Traylor M et al (2023) Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622(7982):329–338. https://doi.org/10.1038/s41586-023-06592-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang C, Chen L, Savage SR et al (2021) Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 39(3):361-379.e316. https://doi.org/10.1016/j.ccell.2020.12.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Satpathy S, Krug K, Jean Beltran PM et al (2021) A proteogenomic portrait of lung squamous cell carcinoma. Cell 184(16):4348-4371.e4340. https://doi.org/10.1016/j.cell.2021.07.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cervone DT, Moreno-Justicia R, Quesada JP, Deshmukh AS (2023) Mass spectrometry-based proteomics approaches to interrogate skeletal muscle adaptations to exercise. Scand J Med Sci Sports 34:e14334. https://doi.org/10.1111/sms.14334

Article  PubMed  Google Scholar 

Athieniti E, Spyrou GM (2023) A guide to multi-omics data collection and integration for translational medicine. Comput Struct Biotechnol J 21:134–149. https://doi.org/10.1016/j.csbj.2022.11.050

Article  CAS  PubMed  Google Scholar 

MacCoss MJ, Alfaro JA, Faivre DA, Wu CC, Wanunu M, Slavov N (2023) Sampling the proteome by emerging single-molecule and mass spectrometry methods. Nat Methods 20(3):339–346. https://doi.org/10.1038/s41592-023-01802-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao J, Packer JS, Ramani V et al (2017) Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357(6352):661–667. https://doi.org/10.1126/science.aam8940

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Codreanu SG, Wen B et al (2018) Detection of proteome diversity resulted from alternative splicing is limited by trypsin cleavage specificity. Mol Cell Proteom 17(3):422–430. https://doi.org/10.1074/mcp.RA117.000155

Article  CAS  Google Scholar 

Giuliani A, Bui TT, Helmy M, Selvarajoo K (2022) Identifying toggle genes from transcriptome-wide scatter: a new perspective for biological regulation. Genomics 114(1):215–228. https://doi.org/10.1016/j.ygeno.2021.11.027

留言 (0)

沒有登入
gif