Defective HIV-1 genomes and their potential impact on HIV pathogenesis

Baczko K, Liebert UG, Billeter M, Cattaneo R, Budka H, ter Meulen V. Expression of defective measles virus genes in brain tissues of patients with subacute sclerosing panencephalitis. J Virol. 1986;59(2):472–8.

CAS  PubMed  PubMed Central  Google Scholar 

Sidhu MS, Crowley J, Lowenthal A, Karcher D, Menonna J, Cook S, et al. Defective measles virus in human subacute sclerosing panencephalitis brain. Virology. 1994;202(2):631–41.

CAS  PubMed  Google Scholar 

Genoyer E, López CB. Defective viral genomes alter how Sendai virus interacts with cellular trafficking machinery, leading to heterogeneity in the production of viral particles among infected cells. J Virol. 2018;93(4):e01579-e1618.

Google Scholar 

Xu J, Sun Y, Li Y, Ruthel G, Weiss SR, Raj A, et al. Replication defective viral genomes exploit a cellular pro-survival mechanism to establish paramyxovirus persistence. Nat Commun. 2017;8(1):1–13.

Google Scholar 

Calain P, Roux L, Kolakofsky D. Defective interfering genomes and Ebola virus persistence. Lancet. 2016;388:659–60.

PubMed  Google Scholar 

Manzoni TB, López CB. Defective (interfering) viral genomes re-explored: impact on antiviral immunity and virus persistence. Future Virol. 2018;13(7):493–503. https://doi.org/10.2217/fvl-2018-0021.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Calain P, Monroe MC, Nichol ST. Ebola virus defective interfering particles and persistent infection. Virology. 1999;262(1):114–28.

CAS  PubMed  Google Scholar 

Bruner KM, Murray AJ, Pollack RA, Soliman MG, Laskey SB, Capoferri AA, et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med. 2016;22(9):1043–9.

CAS  PubMed  PubMed Central  Google Scholar 

Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DIS, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013;155(3):540.

CAS  PubMed  PubMed Central  Google Scholar 

Katz RA, Skalka AM. Generation of diversity in retroviruses. Annu Rev Genet. 1990;24(1):409–43.

CAS  PubMed  Google Scholar 

Churchill MJ, Deeks SG, Margolis DM, Siliciano RF, Swanstrom R. HIV reservoirs: what, where and how to target them. Nat Rev Microbiol. 2016;14(1):55–60.

CAS  PubMed  Google Scholar 

Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-and-lock strategies to cure HIV infection. Viruses. 2020;12(1):84.

CAS  PubMed Central  Google Scholar 

Martin AR, Bender AM, Hackman J, Kwon KJ, Lynch BA, Bruno D, et al. Similar frequency and inducibility of intact human immunodeficiency virus-1 proviruses in blood and lymph nodes. J Infect Dis. 2021;224(2):258.

CAS  PubMed  Google Scholar 

Gálvez C, Grau-Expósito J, Urrea V, Clotet B, Falcó V, Buzón MJ, et al. Atlas of the HIV-1 reservoir in peripheral CD4 T cells of individuals on successful antiretroviral therapy. MBio. 2021;12(6):e03078-21.

PubMed Central  Google Scholar 

Abdel-Mohsen M, Kuri-Cervantes L, Grau-Exposito J, Spivak AM, Nell RA, Tomescu C, et al. CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells. Sci Transl Med. 2018;10(437):eaar6759. https://doi.org/10.1126/scitranslmed.aar6759.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bruner KM, Wang Z, Simonetti FR, Bender AM, Kwon KJ, Sengupta S, et al. A novel quantitative approach for measuring the reservoir of latent HIV-1 proviruses. Nature. 2019;566(7742):120.

CAS  PubMed  PubMed Central  Google Scholar 

Lorenzi JCC, Cohen YZ, Cohn LB, Kreider EF, Barton JP, Learn GH, et al. Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA. Proc Natl Acad Sci USA. 2016;113(49):E7908–16. https://doi.org/10.1073/pnas.1617789113.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003;9(6):727–8.

CAS  PubMed  Google Scholar 

Jiang C, Lian X, Gao C, Sun X, Einkauf KB, Chevalier JM, et al. A unique viral reservoir landscape in HIV-1 elite controllers. Nature. 2020;585(7824):261.

CAS  PubMed  PubMed Central  Google Scholar 

Cohn LB, Silva IT, Oliveira TY, Rosales RA, Parrish EH, Learn GH, et al. HIV-1 integration landscape during latent and active infection. Cell. 2015;160(3):420–32.

CAS  PubMed  PubMed Central  Google Scholar 

Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997;387(6629):183–8.

CAS  PubMed  Google Scholar 

Sannier G, Dubé M, Dufour C, Richard C, Brassard N, Delgado GG, et al. Combined single-cell transcriptional, translational, and genomic profiling reveals HIV-1 reservoir diversity. Cell Rep. 2021;36(9):109643.

CAS  PubMed  Google Scholar 

Grau-Expósito J, Luque-Ballesteros L, Navarro J, Curran A, Burgos J, Ribera E, et al. Latency reversal agents affect differently the latent reservoir present in distinct CD4+ T subpopulations. PLOS Pathog. 2019;15(8):e1007991. https://doi.org/10.1371/journal.ppat.1007991.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pollack RA, Jones RB, Pertea M, Bruner KM, Martin AR, Thomas AS, et al. Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe. 2017;21(4):494-506.e4.

CAS  PubMed  PubMed Central  Google Scholar 

Anderson EM, Simonetti FR, Gorelick RJ, Hill S, Gouzoulis MA, Bell J, et al. Dynamic shifts in the HIV proviral landscape during long term combination antiretroviral therapy: implications for persistence and control of HIV infections. Viruses. 2020;12(2):136.

CAS  PubMed Central  Google Scholar 

Liu R, Catalano AA, Ho Y-C. Measuring the size and decay dynamics of the HIV-1 latent reservoir. Cell Rep Med. 2021;2(4):100249.

PubMed  PubMed Central  Google Scholar 

Peluso MJ, Bacchetti P, Ritter KD, Beg S, Lai J, Martin JN, et al. Differential decay of intact and defective proviral DNA in HIV-1-infected individuals on suppressive antiretroviral therapy. JCI Insight. 2020;5(4):e132997.

PubMed Central  Google Scholar 

Antar AAR, Jenike KM, Jang S, Rigau DN, Reeves DB, Hoh R, et al. Longitudinal study reveals HIV-1–infected CD4+ T cell dynamics during long-term antiretroviral therapy. J Clin Invest. 2020;130(7):3543.

CAS  PubMed  PubMed Central  Google Scholar 

Einkauf KB, Osborn MR, Gao C, Sun W, Sun X, Lian X, et al. Parallel analysis of transcription, integration, and sequence of single HIV-1 proviruses. Cell. 2022;185(2):266-282.e15.

CAS  PubMed  PubMed Central  Google Scholar 

Abrahams MR, Joseph SB, Garrett N, Tyers L, Moeser M, Archin N, et al. The replication-competent HIV-1 latent reservoir is primarily established near the time of therapy initiation. Sci Transl Med. 2019;11(513):eaaw5589.

CAS  PubMed  PubMed Central  Google Scholar 

Brodin J, Zanini F, Thebo L, Lanz C, Bratt G, Neher RA, et al. Establishment and stability of the latent HIV-1 DNA reservoir. Elife. 2016;5(November2016):e18889.

PubMed  PubMed Central  Google Scholar 

White JA, Simonetti FR, Beg S, McMyn NF, Dai W, Bachmann N, et al. Complex decay dynamics of HIV virions, intact and defective proviruses, and 2LTR circles following initiation of antiretroviral therapy. Proc Natl Acad Sci USA. 2022;119(6):e2120326119.

CAS  PubMed  Google Scholar 

Lian X, Gao C, Sun X, Jiang C, Einkauf KB, Seiger KW, et al. Signatures of immune selection in intact and defective proviruses distinguish HIV-1 elite controllers. Sci Transl Med. 2021;13(624):eabl4097. https://doi.org/10.1126/scitranslmed.abl4097.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hartana CA, Yu XG. Immunological effector mechanisms in HIV-1 elite controllers. Curr Opin HIV AIDS. 2021;16(5):243–8.

CAS  PubMed  Google Scholar 

Pardons M, Fromentin R, Pagliuzza A, Routy JP, Chomont N. Latency reversing agents induce differential responses in distinct memory CD4 T cell subsets in individuals on antiretroviral therapy. Cell Rep. 2019;29(9):2783.

CAS  PubMed  PubMed Central  Google Scholar 

Kulpa DA, Talla A, Brehm JH, Ribeiro SP, Yuan S, Bebin-Blackwell A-G, et al. Differentiation into an effector memory phenotype potentiates HIV-1 latency reversal in CD4 + T cells. J Virol. 2019;93(24):e00969-19. https://doi.org/10.1128/JVI.00969-19.

Article  PubMed  PubMed Central  Google Scholar 

Kwon KJ, Timmons AE, Sengupta S, Simonetti FR, Zhang H, Hoh R, et al. Different human resting memory CD4+ T cell subsets show similar low inducibility of latent HIV-1 proviruses. Sci Transl Med. 2020;12(528):6795. https://doi.org/10.1126/scitranslmed.aax6795.

CAS  Article  Google Scholar 

Battivelli E, Dahabieh MS, Abdel-Mohsen M, Svensson JP, Da Silva IT, Cohn LB, et al. Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T cells. Elife. 2018;7:e34655.

PubMed  PubMed Central  Google Scholar 

Lenasi T, Contreras X, Peterlin BM. Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host Microbe. 2008;4(2):123–33.

CAS  PubMed  PubMed Central  Google Scholar 

Lelek M, Casartelli N, Pellin D, Rizzi E, Souque P, Severgnini M, et al. Chromatin organization at the nuclear pore favours HIV replication. Nat Commun. 2015;6(1):1–12.

留言 (0)

沒有登入
gif