The HIV-1 gag p6: a promising target for therapeutic intervention

Freed EO. HIV-1 assembly, release and maturation. Nat Rev Microbiol. 2015;13:484–96. https://doi.org/10.1038/nrmicro3490.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qu K, Ke Z, Zila V, Anders-Össwein M, Glass B, Mücksch F, Müller R, Schultz C, Müller B, Kräusslich H-G, Briggs JAG. Maturation of the matrix and viral membrane of HIV-1, Science. 373 (2021) 700–4. https://doi.org/10.1126/science.abe6821.

Göttlinger HG, Dorfman T, Sodroski JG, Haseltine WA. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci U S A. 1991;88:3195–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC51412/. accessed September 10, 2023.

Article  PubMed  PubMed Central  Google Scholar 

Bharat TAM, Castillo Menendez LR, Hagen WJH, Lux V, Igonet S, Schorb M, Schur FKM, Kräusslich H-G, Briggs JAG. Cryo-electron microscopy of tubular arrays of HIV-1 gag resolves structures essential for immature virus assembly. Proc Natl Acad Sci U S A. 2014;111:8233–8. https://doi.org/10.1073/pnas.1401455111.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mattei S, Glass B, Hagen WJH, Kräusslich H-G, Briggs JAG. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science. 2016;354:1434–7. https://doi.org/10.1126/science.aah4972.

Article  CAS  PubMed  Google Scholar 

Mendonça L, Sun D, Ning J, Liu J, Kotecha A, Olek M, Frosio T, Fu X, Himes BA, Kleinpeter AB, Freed EO, Zhou J, Aiken C, Zhang P. CryoET structures of immature HIV Gag reveal six-helix bundle. Commun Biol. 2021;4:481. https://doi.org/10.1038/s42003-021-01999-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fossen T, Wray V, Bruns K, Rachmat J, Henklein P, Tessmer U, Maczurek A, Klinger P, Schubert U. Solution structure of the human immunodeficiency virus type 1 p6 Protein*. J Biol Chem. 2005;280:42515–27. https://doi.org/10.1074/jbc.M507375200.

Article  CAS  PubMed  Google Scholar 

Solbak SMØ, Reksten TR, Hahn F, Wray V, Henklein P, Henklein P, Halskau Ø, Schubert U, Fossen T. HIV-1 p6 - a structured to flexible multifunctional membrane-interacting protein. Biochim Biophys Acta. 2013;1828:816–23. https://doi.org/10.1016/j.bbamem.2012.11.010.

Article  CAS  PubMed  Google Scholar 

Wollert T, Hurley JH. Molecular mechanism of Multivesicular Body Biogenesis by ESCRT complexes. Nature. 2010;464:864–9. https://doi.org/10.1038/nature08849.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jouvenet N, Zhadina M, Bieniasz PD, Simon SM. Dynamics of ESCRT protein recruitment during retroviral assembly. Nat Cell Biol. 2011;13:394–401. https://doi.org/10.1038/ncb2207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Votteler J, Sundquist WI. Virus budding and the ESCRT pathway. Cell Host Microbe. 2013;14:232–41. https://doi.org/10.1016/j.chom.2013.08.012.

Article  CAS  PubMed  Google Scholar 

Strack B, Calistri A, Craig S, Popova E, Göttlinger HG. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell. 2003;114:689–99. https://doi.org/10.1016/s0092-8674(03)00653-6.

Article  CAS  PubMed  Google Scholar 

Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, Wettstein DA, Stray KM, Côté M, Rich RL, Myszka DG, Sundquist WI. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell. 2001;107:55–65. https://doi.org/10.1016/s0092-8674(01)00506-2.

Article  CAS  PubMed  Google Scholar 

Friedrich M, Setz C, Hahn F, Matthaei A, Fraedrich K, Rauch P, Henklein P, Traxdorf M, Fossen T, Schubert U. Glutamic acid residues in HIV-1 p6 regulate virus budding and Membrane Association of Gag. Viruses. 2016;8:117. https://doi.org/10.3390/v8040117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

VerPlank L, Bouamr F, LaGrassa TJ, Agresta B, Kikonyogo A, Leis J, Carter CA. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(gag). Proc Natl Acad Sci U S A. 2001;98:7724–9. https://doi.org/10.1073/pnas.131059198.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morita E, Sandrin V, McCullough J, Katsuyama A, Hamilton IB, Sundquist WI. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe. 2011;9:235–42. https://doi.org/10.1016/j.chom.2011.02.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Rocquigny H, Petitjean P, Tanchou V, Decimo D, Drouot L, Delaunay T, Darlix J-L, Roques BP. The Zinc fingers of HIV Nucleocapsid Protein NCp7 Direct Interactions with the viral Regulatory protein Vpr*. J Biol Chem. 1997;272:30753–9. https://doi.org/10.1074/jbc.272.49.30753.

Article  PubMed  Google Scholar 

Kondo E, Göttlinger HG. A conserved LXXLF sequence is the major determinant in p6gag required for the incorporation of human immunodeficiency virus type 1 vpr. J Virol. 1996;70:159–64. https://doi.org/10.1128/JVI.70.1.159-164.1996.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu YL, Bennett RP, Wills JW, Gorelick R, Ratner L. A leucine triplet repeat sequence (LXX)4 in p6gag is important for vpr incorporation into human immunodeficiency virus type 1 particles. J Virol. 1995;69:6873–9. https://doi.org/10.1128/JVI.69.11.6873-6879.1995.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu H, Jian H, Zhao L-J. Identification of the 15FRFG domain in HIV-1 gag p6 essential for vpr packaging into the virion. Retrovirology. 2004;1:26. https://doi.org/10.1186/1742-4690-1-26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kondo E, Mammano F, Cohen EA, Göttlinger HG. The p6gag domain of human immunodeficiency virus type 1 is sufficient for the incorporation of Vpr into heterologous viral particles. J Virol. 1995;69:2759–64. https://doi.org/10.1128/JVI.69.5.2759-2764.1995.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bachand F, Yao XJ, Hrimech M, Rougeau N, Cohen EA. Incorporation of Vpr into human immunodeficiency virus type 1 requires a direct interaction with the p6 domain of the p55 gag precursor. J Biol Chem. 1999;274:9083–91. https://doi.org/10.1074/jbc.274.13.9083.

Article  CAS  PubMed  Google Scholar 

Wanaguru M, Bishop KN. HIV-1 gag recruits oligomeric Vpr via two binding sites in p6, but both mature p6 and vpr are rapidly lost upon target cell entry. J Virol. 2021;JVI0055421. https://doi.org/10.1128/JVI.00554-21.

Fritz JV, Dujardin D, Godet J, Didier P, De Mey J, Darlix J-L, Mély Y, de Rocquigny H. HIV-1 Vpr oligomerization but not that of Gag directs the Interaction between Vpr and Gag. J Virol. 2010;84:1585–96. https://doi.org/10.1128/jvi.01691-09.

Article  CAS  PubMed  Google Scholar 

Morellet N, Bouaziz S, Petitjean P, Roques BP. NMR structure of the HIV-1 regulatory protein VPR. J Mol Biol. 2003;327:215–27. https://doi.org/10.1016/s0022-2836(03)00060-3.

Article  CAS  PubMed  Google Scholar 

Bruns K, Fossen T, Wray V, Henklein P, Tessmer U, Schubert U. Structural characterization of the HIV-1 vpr N terminus: evidence of cis/trans-proline isomerism. J Biol Chem. 2003;278:43188–201. https://doi.org/10.1074/jbc.M305413200.

Article  CAS  PubMed  Google Scholar 

Chougui G, Munir-Matloob S, Matkovic R, Martin MM, Morel M, Lahouassa H, Leduc M, Ramirez BC, Etienne L, Margottin-Goguet F. HIV-2/SIV viral protein X counteracts HUSH repressor complex. Nat Microbiol. 2018;3:891–7. https://doi.org/10.1038/s41564-018-0179-6.

Article  CAS  PubMed  Google Scholar 

Laguette N, Brégnard C, Hue P, Basbous J, Yatim A, Larroque M, Kirchhoff F, Constantinou A, Sobhian B, Benkirane M. Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing. Cell. 2014;156:134–45. https://doi.org/10.1016/j.cell.2013.12.011.

Article  CAS  PubMed  Google Scholar 

Lv L, Wang Q, Xu Y, Tsao L-C, Nakagawa T, Guo H, Su L, Xiong Y. Vpr targets TET2 for degradation by CRL4VprBP E3 ligase to sustain IL-6 expression and enhance HIV-1 replication. Mol Cell. 2018;70:961–970e5. https://doi.org/10.1016/j.molcel.2018.05.007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yurkovetskiy L, Guney MH, Kim K, Goh SL, McCauley S, Dauphin A, Diehl WE, Luban J. Primate immunodeficiency virus proteins Vpx and Vpr counteract transcriptional repression of proviruses by the HUSH complex. Nat Microbiol. 2018;3:1354–61. https://doi.org/10.1038/s41564-018-0256-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao L, Wang S, Xu M, He Y, Zhang X, Xiong Y, Sun H, Ding H, Geng W, Shang H, Liang G. Vpr counteracts the restriction of LAPTM5 to promote HIV-1 infection in macrophages. Nat Commun. 2021;12:3691. https://doi.org/10.1038/s41467-021-24087-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Müller B, Patschinsky T, Kräusslich H-G. The late-domain-containing protein p6 is the predominant phosphoprotein of human immunodeficiency virus type 1 particles. J Virol. 2002;76:1015–24.

留言 (0)

沒有登入
gif