Freed EO. HIV-1 assembly, release and maturation. Nat Rev Microbiol. 2015;13:484–96. https://doi.org/10.1038/nrmicro3490.
Article CAS PubMed PubMed Central Google Scholar
Qu K, Ke Z, Zila V, Anders-Össwein M, Glass B, Mücksch F, Müller R, Schultz C, Müller B, Kräusslich H-G, Briggs JAG. Maturation of the matrix and viral membrane of HIV-1, Science. 373 (2021) 700–4. https://doi.org/10.1126/science.abe6821.
Göttlinger HG, Dorfman T, Sodroski JG, Haseltine WA. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci U S A. 1991;88:3195–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC51412/. accessed September 10, 2023.
Article PubMed PubMed Central Google Scholar
Bharat TAM, Castillo Menendez LR, Hagen WJH, Lux V, Igonet S, Schorb M, Schur FKM, Kräusslich H-G, Briggs JAG. Cryo-electron microscopy of tubular arrays of HIV-1 gag resolves structures essential for immature virus assembly. Proc Natl Acad Sci U S A. 2014;111:8233–8. https://doi.org/10.1073/pnas.1401455111.
Article CAS PubMed PubMed Central Google Scholar
Mattei S, Glass B, Hagen WJH, Kräusslich H-G, Briggs JAG. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science. 2016;354:1434–7. https://doi.org/10.1126/science.aah4972.
Article CAS PubMed Google Scholar
Mendonça L, Sun D, Ning J, Liu J, Kotecha A, Olek M, Frosio T, Fu X, Himes BA, Kleinpeter AB, Freed EO, Zhou J, Aiken C, Zhang P. CryoET structures of immature HIV Gag reveal six-helix bundle. Commun Biol. 2021;4:481. https://doi.org/10.1038/s42003-021-01999-1.
Article CAS PubMed PubMed Central Google Scholar
Fossen T, Wray V, Bruns K, Rachmat J, Henklein P, Tessmer U, Maczurek A, Klinger P, Schubert U. Solution structure of the human immunodeficiency virus type 1 p6 Protein*. J Biol Chem. 2005;280:42515–27. https://doi.org/10.1074/jbc.M507375200.
Article CAS PubMed Google Scholar
Solbak SMØ, Reksten TR, Hahn F, Wray V, Henklein P, Henklein P, Halskau Ø, Schubert U, Fossen T. HIV-1 p6 - a structured to flexible multifunctional membrane-interacting protein. Biochim Biophys Acta. 2013;1828:816–23. https://doi.org/10.1016/j.bbamem.2012.11.010.
Article CAS PubMed Google Scholar
Wollert T, Hurley JH. Molecular mechanism of Multivesicular Body Biogenesis by ESCRT complexes. Nature. 2010;464:864–9. https://doi.org/10.1038/nature08849.
Article CAS PubMed PubMed Central Google Scholar
Jouvenet N, Zhadina M, Bieniasz PD, Simon SM. Dynamics of ESCRT protein recruitment during retroviral assembly. Nat Cell Biol. 2011;13:394–401. https://doi.org/10.1038/ncb2207.
Article CAS PubMed PubMed Central Google Scholar
Votteler J, Sundquist WI. Virus budding and the ESCRT pathway. Cell Host Microbe. 2013;14:232–41. https://doi.org/10.1016/j.chom.2013.08.012.
Article CAS PubMed Google Scholar
Strack B, Calistri A, Craig S, Popova E, Göttlinger HG. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell. 2003;114:689–99. https://doi.org/10.1016/s0092-8674(03)00653-6.
Article CAS PubMed Google Scholar
Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, Wettstein DA, Stray KM, Côté M, Rich RL, Myszka DG, Sundquist WI. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell. 2001;107:55–65. https://doi.org/10.1016/s0092-8674(01)00506-2.
Article CAS PubMed Google Scholar
Friedrich M, Setz C, Hahn F, Matthaei A, Fraedrich K, Rauch P, Henklein P, Traxdorf M, Fossen T, Schubert U. Glutamic acid residues in HIV-1 p6 regulate virus budding and Membrane Association of Gag. Viruses. 2016;8:117. https://doi.org/10.3390/v8040117.
Article CAS PubMed PubMed Central Google Scholar
VerPlank L, Bouamr F, LaGrassa TJ, Agresta B, Kikonyogo A, Leis J, Carter CA. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(gag). Proc Natl Acad Sci U S A. 2001;98:7724–9. https://doi.org/10.1073/pnas.131059198.
Article CAS PubMed PubMed Central Google Scholar
Morita E, Sandrin V, McCullough J, Katsuyama A, Hamilton IB, Sundquist WI. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe. 2011;9:235–42. https://doi.org/10.1016/j.chom.2011.02.004.
Article CAS PubMed PubMed Central Google Scholar
de Rocquigny H, Petitjean P, Tanchou V, Decimo D, Drouot L, Delaunay T, Darlix J-L, Roques BP. The Zinc fingers of HIV Nucleocapsid Protein NCp7 Direct Interactions with the viral Regulatory protein Vpr*. J Biol Chem. 1997;272:30753–9. https://doi.org/10.1074/jbc.272.49.30753.
Kondo E, Göttlinger HG. A conserved LXXLF sequence is the major determinant in p6gag required for the incorporation of human immunodeficiency virus type 1 vpr. J Virol. 1996;70:159–64. https://doi.org/10.1128/JVI.70.1.159-164.1996.
Article CAS PubMed PubMed Central Google Scholar
Lu YL, Bennett RP, Wills JW, Gorelick R, Ratner L. A leucine triplet repeat sequence (LXX)4 in p6gag is important for vpr incorporation into human immunodeficiency virus type 1 particles. J Virol. 1995;69:6873–9. https://doi.org/10.1128/JVI.69.11.6873-6879.1995.
Article CAS PubMed PubMed Central Google Scholar
Zhu H, Jian H, Zhao L-J. Identification of the 15FRFG domain in HIV-1 gag p6 essential for vpr packaging into the virion. Retrovirology. 2004;1:26. https://doi.org/10.1186/1742-4690-1-26.
Article CAS PubMed PubMed Central Google Scholar
Kondo E, Mammano F, Cohen EA, Göttlinger HG. The p6gag domain of human immunodeficiency virus type 1 is sufficient for the incorporation of Vpr into heterologous viral particles. J Virol. 1995;69:2759–64. https://doi.org/10.1128/JVI.69.5.2759-2764.1995.
Article CAS PubMed PubMed Central Google Scholar
Bachand F, Yao XJ, Hrimech M, Rougeau N, Cohen EA. Incorporation of Vpr into human immunodeficiency virus type 1 requires a direct interaction with the p6 domain of the p55 gag precursor. J Biol Chem. 1999;274:9083–91. https://doi.org/10.1074/jbc.274.13.9083.
Article CAS PubMed Google Scholar
Wanaguru M, Bishop KN. HIV-1 gag recruits oligomeric Vpr via two binding sites in p6, but both mature p6 and vpr are rapidly lost upon target cell entry. J Virol. 2021;JVI0055421. https://doi.org/10.1128/JVI.00554-21.
Fritz JV, Dujardin D, Godet J, Didier P, De Mey J, Darlix J-L, Mély Y, de Rocquigny H. HIV-1 Vpr oligomerization but not that of Gag directs the Interaction between Vpr and Gag. J Virol. 2010;84:1585–96. https://doi.org/10.1128/jvi.01691-09.
Article CAS PubMed Google Scholar
Morellet N, Bouaziz S, Petitjean P, Roques BP. NMR structure of the HIV-1 regulatory protein VPR. J Mol Biol. 2003;327:215–27. https://doi.org/10.1016/s0022-2836(03)00060-3.
Article CAS PubMed Google Scholar
Bruns K, Fossen T, Wray V, Henklein P, Tessmer U, Schubert U. Structural characterization of the HIV-1 vpr N terminus: evidence of cis/trans-proline isomerism. J Biol Chem. 2003;278:43188–201. https://doi.org/10.1074/jbc.M305413200.
Article CAS PubMed Google Scholar
Chougui G, Munir-Matloob S, Matkovic R, Martin MM, Morel M, Lahouassa H, Leduc M, Ramirez BC, Etienne L, Margottin-Goguet F. HIV-2/SIV viral protein X counteracts HUSH repressor complex. Nat Microbiol. 2018;3:891–7. https://doi.org/10.1038/s41564-018-0179-6.
Article CAS PubMed Google Scholar
Laguette N, Brégnard C, Hue P, Basbous J, Yatim A, Larroque M, Kirchhoff F, Constantinou A, Sobhian B, Benkirane M. Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing. Cell. 2014;156:134–45. https://doi.org/10.1016/j.cell.2013.12.011.
Article CAS PubMed Google Scholar
Lv L, Wang Q, Xu Y, Tsao L-C, Nakagawa T, Guo H, Su L, Xiong Y. Vpr targets TET2 for degradation by CRL4VprBP E3 ligase to sustain IL-6 expression and enhance HIV-1 replication. Mol Cell. 2018;70:961–970e5. https://doi.org/10.1016/j.molcel.2018.05.007.
Article CAS PubMed PubMed Central Google Scholar
Yurkovetskiy L, Guney MH, Kim K, Goh SL, McCauley S, Dauphin A, Diehl WE, Luban J. Primate immunodeficiency virus proteins Vpx and Vpr counteract transcriptional repression of proviruses by the HUSH complex. Nat Microbiol. 2018;3:1354–61. https://doi.org/10.1038/s41564-018-0256-x.
Article CAS PubMed PubMed Central Google Scholar
Zhao L, Wang S, Xu M, He Y, Zhang X, Xiong Y, Sun H, Ding H, Geng W, Shang H, Liang G. Vpr counteracts the restriction of LAPTM5 to promote HIV-1 infection in macrophages. Nat Commun. 2021;12:3691. https://doi.org/10.1038/s41467-021-24087-8.
Article CAS PubMed PubMed Central Google Scholar
Müller B, Patschinsky T, Kräusslich H-G. The late-domain-containing protein p6 is the predominant phosphoprotein of human immunodeficiency virus type 1 particles. J Virol. 2002;76:1015–24.
留言 (0)