Tram J, Mesnard J-M, Peloponese J-M. Alternative RNA splicing in cancer: what about adult T-cell leukemia? Front Immunol. 2022;13:959382.
Article PubMed PubMed Central Google Scholar
Martin GS. The hunting of the src. Nat Rev Mol Cell Biol. 2001;2:467–75.
Article CAS PubMed Google Scholar
Fan H. Leukemogenesis by Moloney murine leukemia virus: a multistep process. Trends Microbiol. 1997;5:74–82.
Article CAS PubMed Google Scholar
De Ravin SS, Su L, Theobald N, Choi U, Macpherson JL, Poidinger M et al. Enhancers Are Major Targets for Murine Leukemia Virus Vector Integration. Beemon KL, editor. J Virol. 2014;88:4504–13.
LaFave MC, Varshney GK, Gildea DE, Wolfsberg TG, Baxevanis AD, Burgess SM. MLV integration site selection is driven by strong enhancers and active promoters. Nucleic Acids Res. 2014;42:4257–69.
Article CAS PubMed PubMed Central Google Scholar
Kim R, Trubetskoy A, Suzuki T, Jenkins NA, Copeland NG, Lenz J. Genome-based identification of Cancer genes by Proviral Tagging in Mouse Retrovirus-Induced T-Cell Lymphomas. J Virol. 2003;77:2056–62.
Article CAS PubMed PubMed Central Google Scholar
Li J, Shen H, Himmel KL, Dupuy AJ, Largaespada DA, Nakamura T, et al. Leukaemia disease genes: large-scale cloning and pathway predictions. Nat Genet. 1999;23:348–53.
Article CAS PubMed Google Scholar
Lund AH, Turner G, Trubetskoy A, Verhoeven E, Wientjens E, Hulsman D, et al. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet. 2002;32:160–5.
Article CAS PubMed Google Scholar
Mikkers H, Allen J, Knipscheer P, Romeyn L, Hart A, Vink E, et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet. 2002;32:153–9.
Article CAS PubMed Google Scholar
Suzuki T, Shen H, Akagi K, Morse HC, Malley JD, Naiman DQ, et al. New genes involved in cancer identified by retroviral tagging. Nat Genet. 2002;32:166–74.
Article CAS PubMed Google Scholar
Déjardin J, Bompard-Maréchal G, Audit M, Hope TJ, Sitbon M, Mougel M. A Novel Subgenomic Murine Leukemia Virus RNA transcript results from alternative splicing. J Virol. 2000;74:3709–14.
Article PubMed PubMed Central Google Scholar
Houzet L. A new retroelement constituted by a natural alternatively spliced RNA of murine replication-competent retroviruses. EMBO J. 2003;22:4866–75.
Article CAS PubMed PubMed Central Google Scholar
Maurel S, Houzet L, Garcia EL, Telesnitsky A, Mougel M. Characterization of a natural heterodimer between MLV genomic RNA and the SD′ retroelement generated by alternative splicing. RNA. 2007;13:2266–76.
Article CAS PubMed PubMed Central Google Scholar
Maurel S, Mougel M. Murine leukemia virus RNA dimerization is coupled to transcription and splicing processes. Retrovirology. 2010;7:64.
Article PubMed PubMed Central Google Scholar
Audit M, Déjardin J, Hohl B, Sidobre C, Hope TJ, Mougel M, et al. Introduction of a cis -acting mutation in the Capsid-Coding Gene of Moloney Murine Leukemia Virus extends its Leukemogenic Properties. J Virol. 1999;73:10472–9.
Article CAS PubMed PubMed Central Google Scholar
Ramirez JM, Houzet L, Koller R, Bies J, Wolff L, Mougel M. Activation of c-myb by 5′ retrovirus promoter insertion in myeloid neoplasms is dependent upon an intact alternative splice donor site (SD′) in gag. Virology. 2004;330:398–407.
Article CAS PubMed Google Scholar
Evans LH, Dresler S, Kabat D. Synthesis and glycosylation of Polyprotein Precursors to the Internal Core Proteins of Friend Murine Leukemia Virus. J Virol. 1977;24:865–74.
Article CAS PubMed PubMed Central Google Scholar
Edwards SA, Fan H. Gag-related polyproteins of Moloney murine leukemia virus: evidence for independent synthesis of glycosylated and unglycosylated forms. J Virol. 1979;30:551–63.
Article CAS PubMed PubMed Central Google Scholar
Saris CJ, van Eenbergen J, Liskamp RM, Bloemers HP. Structure of glycosylated and unglycosylated gag and gag-pol precursor proteins of Moloney murine leukemia virus. J Virol. 1983;46:841–59.
Article CAS PubMed PubMed Central Google Scholar
Prats A-C, De Billy G, Wang P, Darlix J-L. CUG initiation codon used for the synthesis of a cell surface antigen coded by the murine leukemia virus. J Mol Biol. 1989;205:363–72.
Article CAS PubMed Google Scholar
Zhao W, Akkawi C, Mougel M, Ross SR. Murine Leukemia Virus P50 Protein Counteracts APOBEC3 by Blocking Its Packaging. Simon V, editor. J Virol. 2020;94:e00032-20.
Stavrou S, Nitta T, Kotla S, Ha D, Nagashima K, Rein AR, et al. Murine leukemia virus glycosylated gag blocks apolipoprotein B editing complex 3 and cytosolic sensor access to the reverse transcription complex. Proc Natl Acad Sci USA. 2013;110:9078–83.
Article CAS PubMed PubMed Central Google Scholar
Rosales Gerpe MC, Renner TM, Bélanger K, Lam C, Aydin H, Langlois M-A. N -Linked Glycosylation Protects Gammaretroviruses against Deamination by APOBEC3 Proteins. Ross SR, editor. J Virol. 2015;89:2342–57.
Renner TM, Bélanger K, Lam C, Gerpe MCR, McBane JE, Langlois M-A. Full-Length Glycosylated Gag of Murine Leukemia Virus Can Associate with the Viral Envelope as a Type I Integral Membrane Protein. Simon V, editor. J Virol. 2018;92:e01530-17.
Roth MJ, Schwartzberg P, Tanese N, Goff SP. Analysis of mutations in the integration function of Moloney murine leukemia virus: effects on DNA binding and cutting. J Virol. 1990;64:4709–17.
Article CAS PubMed PubMed Central Google Scholar
Aiyer S, Rossi P, Malani N, Schneider WM, Chandar A, Bushman FD, et al. Structural and sequencing analysis of local target DNA recognition by MLV integrase. Nucleic Acids Res. 2015;43:5647–63.
Article CAS PubMed PubMed Central Google Scholar
Wanaguru M, Barry DJ, Benton DJ, O’Reilly NJ, Bishop KN. Murine leukemia virus p12 tethers the capsid-containing pre-integration complex to chromatin by binding directly to host nucleosomes in mitosis. Beemon K, editor. PLoS Pathog. 2018;14:e1007117.
Yueh A, Goff SP. Phosphorylated serine residues and an arginine-rich domain of the Moloney Murine Leukemia Virus p12 protein are required for early events of viral infection. J Virol. 2003;77:1820–9.
Article CAS PubMed PubMed Central Google Scholar
Aiyer S, Swapna GVT, Malani N, Aramini JM, Schneider WM, Plumb MR, et al. Altering murine leukemia virus integration through disruption of the integrase and BET protein family interaction. Nucleic Acids Res. 2014;42:5917–28.
Article CAS PubMed PubMed Central Google Scholar
De Rijck J, de Kogel C, Demeulemeester J, Vets S, El Ashkar S, Malani N, et al. The BET family of proteins targets Moloney murine leukemia virus integration near transcription Start Sites. Cell Rep. 2013;5:886–94.
Article PubMed PubMed Central Google Scholar
Mann R, Mulligan RC, Baltimore D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell. 1983;33:153–9.
Article CAS PubMed Google Scholar
Risser R, Pollack R. A nonselective analysis of SV40 transformation of mouse 3T3 cells. Virology. 1974;59:477–89.
Article CAS PubMed Google Scholar
Baluyot MF, Grosse SA, Lyddon TD, Janaka SK, Johnson MC. CRM1-Dependent trafficking of retroviral gag proteins revisited. J Virol. 2012;86:4696–700.
Article CAS PubMed PubMed Central Google Scholar
Arpin-André C, Laverdure S, Barbeau B, Gross A, Mesnard J-M. Construction of a reporter vector for analysis of bidirectional transcriptional activity of retrovirus LTR. Plasmid. 2014;74:45–51.
Rasmussen MH, Ballarín-González B, Liu J, Lassen LB, Füchtbauer A, Füchtbauer E-M, et al. Antisense transcription in Gammaretroviruses as a mechanism of Insertional activation of host genes. J Virol. 2010;84:3780–8.
Article CAS PubMed PubMed Central Google Scholar
Wang G, Liu H, An L, Hou S, Zhang Q. CAPG facilitates diffuse large B-cell lymphoma cell progression through PI3K/AKT signaling pathway. Hum Immunol. 2022;83:832–42.
Article CAS PubMed Google Scholar
Zhang Y, Frohman MA. Cellular and physiological roles for phospholipase D1 in Cancer. J Biol Chem. 2014;289:22567–74.
Article CAS PubMed PubMed Central Google Scholar
Burdelski C, Borcherding L, Kluth M, Hube-Magg C, Melling N, Simon R, et al. Family with sequence similarity 13 C (FAM13C) overexpression is an independent prognostic marker in prostate cancer. Oncotarget. 2017;8:31494–508.
留言 (0)