The cell biology of HIV-1 latency and rebound

Richman DD, Wrin T, Little SJ, Petropoulos CJ. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci U S A. 2003;100(7):4144–9. https://doi.org/10.1073/pnas.0630530100. (Epub 2003/03/20).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, et al. Antibody neutralization and escape by HIV-1. Nature. 2003;422(6929):307–12. https://doi.org/10.1038/nature01470. (Epub 2003/03/21).

Article  CAS  PubMed  Google Scholar 

Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 2013;9(3): e1003211. https://doi.org/10.1371/journal.ppat.1003211. (Epub 2013/03/22).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hocqueloux L, Prazuck T, Avettand-Fenoel V, Lafeuillade A, Cardon B, Viard JP, Rouzioux C. Long-term immunovirologic control following antiretroviral therapy interruption in patients treated at the time of primary HIV-1 infection. AIDS. 2010;24(10):1598–601. https://doi.org/10.1097/qad.0b013e32833b61ba. (Epub 2010/06/16).

Article  PubMed  Google Scholar 

Davey RT Jr, Bhat N, Yoder C, Chun TW, Metcalf JA, Dewar R, et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci U S A. 1999;96(26):15109–14. https://doi.org/10.1073/pnas.96.26.15109. (Epub 1999/12/28).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pannus P, Rutsaert S, De Wit S, Allard SD, Vanham G, Cole B, et al. Rapid viral rebound after analytical treatment interruption in patients with very small HIV reservoir and minimal on-going viral transcription. J Int AIDS Soc. 2020;23(2): e25453. https://doi.org/10.1002/jia2.25453. (Epub 2020/02/29).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colby DJ, Trautmann L, Pinyakorn S, Leyre L, Pagliuzza A, Kroon E, et al. Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat Med. 2018;24(7):923–6. https://doi.org/10.1038/s41591-018-0026-6. (Epub 2018/06/13).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klatt NR, Chomont N, Douek DC, Deeks SG. Immune activation and HIV persistence: implications for curative approaches to HIV infection. Immunol Rev. 2013;254(1):326–42. https://doi.org/10.1111/imr.12065. (Epub 2013/06/19).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Veenhuis RT, Abreu CM, Shirk EN, Gama L, Clements JE. HIV replication and latency in monocytes and macrophages. Semin Immunol. 2021;51: 101472. https://doi.org/10.1016/j.smim.2021.101472. (Epub 20210227).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Honeycutt JB, Wahl A, Baker C, Spagnuolo RA, Foster J, Zakharova O, et al. Macrophages sustain HIV replication in vivo independently of T cells. J Clin Investig. 2016;126(4):1353–66. https://doi.org/10.1172/jci84456. (Epub 20160307).

Article  PubMed  PubMed Central  Google Scholar 

McManus WR, Bale MJ, Spindler J, Wiegand A, Musick A, Patro SC, et al. HIV-1 in lymph nodes is maintained by cellular proliferation during antiretroviral therapy. J Clin Investig. 2019;129(11):4629–42. https://doi.org/10.1172/jci126714. (Epub 20190730).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med. 2004;200(6):749–59. https://doi.org/10.1084/jem.20040874. (Epub 20040913).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moron-Lopez S, Xie G, Kim P, Siegel DA, Lee S, Wong JK, et al. Tissue-specific differences in HIV DNA levels and mechanisms that govern HIV transcription in blood, gut, genital tract and liver in ART-treated women. J Int AIDS Soc. 2021;24(7): e25738. https://doi.org/10.1002/jia2.25738.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carter CC, Onafuwa-Nuga A, McNamara LA, Riddell JT, Bixby D, Savona MR, Collins KL. HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs. Nat Med. 2010;16(4):446–51. https://doi.org/10.1038/nm.2109. (Epub 2010/03/09).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chavez L, Calvanese V, Verdin E. HIV latency is established directly and early in both resting and activated primary CD4 T cells. PLoS Pathog. 2015;11(6):e1004955. https://doi.org/10.1371/journal.ppat.1004955. (Epub 2015/06/13).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agosto LM, Herring MB, Mothes W, Henderson AJ. HIV-1-infected CD4+ T cells facilitate latent infection of resting CD4+ T cells through cell-cell contact. Cell Rep. 2018;24(8):2088–100. https://doi.org/10.1016/j.celrep.2018.07.079. (Epub 2018/08/23).

Article  CAS  PubMed  Google Scholar 

Wietgrefe SW, Anderson J, Duan L, Southern PJ, Zuck P, Wu G, et al. Initial productive and latent HIV infections originate in vivo by infection of resting T cells. J Clin Invest. 2023. https://doi.org/10.1172/JCI171501. (Epub 2023/09/21).

Article  PubMed  PubMed Central  Google Scholar 

Murray AJ, Kwon KJ, Farber DL, Siliciano RF. The latent reservoir for HIV-1: how immunologic memory and clonal expansion contribute to HIV-1 persistence. J Immunol. 2016;197(2):407–17. https://doi.org/10.4049/jimmunol.1600343. (Epub 2016/07/07).

Article  CAS  PubMed  Google Scholar 

Sengupta S, Siliciano RF. Targeting the latent reservoir for HIV-1. Immunity. 2018;48(5):872–95. https://doi.org/10.1016/j.immuni.2018.04.030. (Epub 2018/05/17).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shan L, Deng K, Gao H, Xing S, Capoferri AA, Durand CM, et al. Transcriptional reprogramming during effector-to-memory transition renders CD4(+) T cells permissive for latent HIV-1 infection. Immunity. 2017;47(4):766-75 e3. https://doi.org/10.1016/j.immuni.2017.09.014. (Epub 2017/10/19).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobrowolski C, Valadkhan S, Graham AC, Shukla M, Ciuffi A, Telenti A, Karn J. Entry of polarized effector cells into quiescence forces HIV latency. MBio. 2019. https://doi.org/10.1128/mBio.00337-19. (Epub 2019/03/28).

Article  PubMed  PubMed Central  Google Scholar 

Bosque A, Planelles V. Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood. 2009;113(1):58–65. https://doi.org/10.1182/blood-2008-07-168393. (Epub 20081010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim M, Hosmane NN, Bullen CK, Capoferri A, Yang HC, Siliciano JD, Siliciano RF. A primary CD4(+) T cell model of HIV-1 latency established after activation through the T cell receptor and subsequent return to quiescence. Nat Protoc. 2014;9(12):2755–70. https://doi.org/10.1038/nprot.2014.188. (Epub 2014/11/07).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5(5):512–7. https://doi.org/10.1038/8394. (Epub 1999/05/06).

Article  CAS  PubMed  Google Scholar 

Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278(5341):1295–300. https://doi.org/10.1126/science.278.5341.1295. (Epub 1997/11/21).

Article  CAS  PubMed  Google Scholar 

Chun TW, Engel D, Berrey MM, Shea T, Corey L, Fauci AS. Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc Natl Acad Sci U S A. 1998;95(15):8869–73. https://doi.org/10.1073/pnas.95.15.8869. (Epub 1998/07/22).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 1997;94(24):13193–7. https://doi.org/10.1073/pnas.94.24.13193. (Epub 1997/12/16).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, Richman DD. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997;278(5341):1291–5. https://doi.org/10.1126/science.278.5341.1291. (Epub 1997/11/21).

Article  CAS  PubMed  Google Scholar 

Gantner P, Buranapraditkun S, Pagliuzza A, Dufour C, Pardons M, Mitchell JL, et al. HIV rapidly targets a diverse pool of CD4(+) T cells to establish productive and latent infections. Immunity. 2023;56(3):653-68.e5. https://doi.org/10.1016/j.immuni.2023.01.030. (Epub 20230217).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif