Complete genome sequences and genomic characterization of five plasmids harbored by environmentally persistent Cronobacter sakazakii strains ST83 H322 and ST64 GK1025B obtained from powdered infant formula manufacturing facilities

Jang H, Gopinath GR, Eshwar A, Srikumar S, Nguyen S, Gangiredla J, Patel IR, Finkelstein SB, Negrete F, Woo J, Lee Y, Fanning S, Stephan R, Tall BD, Lehner A. The secretion of toxins and other exoproteins of Cronobacter: role in virulence, adaption, and persistence. Microorganisms. 2020;8(2):229. https://doi.org/10.3390/microorganisms8020229.

CAS  Article  PubMed Central  Google Scholar 

Holý O, Petrželová J, Hanulík V, Chromá M, Matoušková M, Forsythe SJ. Epidemiology of Cronobacter spp. isolates from patients admitted to the Olomouc University Hospital (Czech Republic). Epidemiol Mikrobiol Imunol. 2014;63:69–72.

PubMed  Google Scholar 

Patrick ME, Mahon BE, Greene SA, Rounds J, Cronquist A, Wymore K, et al. Incidence of Cronobacter spp. infections, United States, 2003–2009. Emerg Infect Dis. 2014;20:1520–3.

Article  PubMed  PubMed Central  Google Scholar 

Alsonosi A, Hariri S, Kajsík M, Oriešková M, Hanulík V, Röderová M, et al. The speciation and genotyping of Cronobacter isolates from hospitalised patients. Eur J Clin Microbiol Infect Dis. 2015;34:1979–88.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yong W, Guo B, Shi X, Cheng T, Chen T, JiangX, et al. An investigation of an acute gastroenteritis outbreak: Cronobacter sakazakii, a potential cause of food-borne illness. Front Microbiol. 2018;2018(9):549.

Google Scholar 

Friedemann M. Epidemiology of invasive neonatal Cronobacter (Enterobacter sakazakii) infections. Eur J Clin Microbiol Infect Dis. 2009;28:1297–304.

CAS  Article  PubMed  Google Scholar 

Strysko J, Cope JR, Martin H, Tarr C, Hise K, Collier S, et al. Food safety and invasive Cronobacter infections during early infancy, 1961–2018. Emerg Infect Dis. 2020;26:857–65. https://doi.org/10.3201/eid2605.190858.

Article  PubMed Central  Google Scholar 

Noriega FR, Kotloff KL, Martin MA, Schwalbe RS. Nosocomial bacteremia caused by Enterobacter sakazakii and Leuconostoc mesenteroides resulting from extrinsic contamination of infant formula. Pediatr Infect Dis J. 1990;9:447–9.

CAS  Article  PubMed  Google Scholar 

Himelright I, Harris E, Lorch V, Anderson M, Jones T, Craig A, et al. Enterobacter sakazakii infections associated with the use of powdered infant formula—tennessee, 2001. Morb Mortal Wkly Rep. 2002;51:297–300.

Google Scholar 

Iversen C, Forsythe SJ. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends Food Sci Technol. 2003;2003(14):443–54.

Article  Google Scholar 

Friedemann M. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol. 2007;116:1–10.

CAS  Article  PubMed  Google Scholar 

Jason J. Prevention of invasive Cronobacter infections in young infants fed powdered infant formulas. Pediatrics. 2012;130:e1076–84. https://doi.org/10.1542/peds.2011-3855.

Article  PubMed  Google Scholar 

Bowen A, Wiesenfeld HC, Kloesz JL, Pasculle AW, Nowalk AJ, Brink L, Elliot E, Martin H, Tarr CL. Notes from the field: Cronobacter sakazakii infection associated with feeding extrinsically contaminated expressed human milk to a premature infant—pennsylvania. Morb Mortal Wkly Rep. 2017;66:761–2.

Article  Google Scholar 

McMullan R, Menon V, Beukers AG, Jensen SO, van Hal SJ, Davis R. Cronobacter sakazakii infection from expressed breast milk. Australia Emerg Infect Dis. 2018;24:393–4.

Article  PubMed  Google Scholar 

Chase HR, Gopinath GR, Eshwar AK, Stoller A, Fricker-Feer C, Gangiredla J, et al. Comparative genomic characterization of the highly persistent and potentially virulent Cronobacter sakazakii ST83, CC65 strain H322 and other ST83 strains. Front Microbiol. 2017;8:1136.

Article  PubMed  PubMed Central  Google Scholar 

Gopinath GR, Chase HR, Gangiredla J, Eshwar A, Jang H, Patel I, Negrete F, Finkelstein S, Park E, Chung T, Yoo Y, Woo J, Lee Y, Park J, Choi H, Jeong S, Jun S, Kim M, Lee C, Jeong H, Fanning S, Stephan R, Iversen C, Reich F, Klein G, Lehner A, Tall BD. Genomic characterization of malonate positive Cronobacter sakazakii serotype O:2, sequence type 64 strains, isolated from clinical, food, and environment samples. Gut Pathog. 2018. https://doi.org/10.1186/s13099-018-0238-9.

Article  PubMed  PubMed Central  Google Scholar 

Jang H, Chase HR, Gangiredla J, Grim CJ, Patel IR, Kothary MH, et al. Analysis of the molecular diversity among Cronobacter species isolated from filth flies using targeted PCR, pan genomic DNA microarray, and whole genome sequencing analyses. Front Microbiol. 2020;11: 561204.

Article  PubMed  PubMed Central  Google Scholar 

Jang H, Woo J, Lee Y, Negrete F, Finkelstein S, Chase HR, Addy N, Ewing L, Beaubrun JJG, Patel I, Gangiredla J, Eshwar A, Jaradat ZW, Seo K, Shabarinath S, Fanning S, Stephan R, Lehner A, Tall BD, Gopinath GR. Draft genomes of Cronobacter sakazakii strains isolated from dried spices bring unique insights into the diversity of plant-associated strains. Stand Genomic Sci. 2018;13:35. https://doi.org/10.1186/s40793-018-0339-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.

CAS  Article  PubMed  Google Scholar 

Wick RR, Judd LM, Gorrie CL. and Holt KE Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biology. 2017;13(6): e1005595. https://doi.org/10.1371/journal.pcbi.1005595.

CAS  Article  Google Scholar 

Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O’Neill K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu F, Marchler GH, Song JS, Thanki N, Yamashita RA, Zheng C, Thibaud-Nissen F, Geer LY, Marchler-Bauer A, Pruitt KD. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res. 2018;46(D1):D851–60. https://doi.org/10.1093/nar/gkx1068.

CAS  Article  PubMed  Google Scholar 

Overbeek R, Olson R, Pusch GD, Olsen GJ, DavisDisz JJT, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014;42:D206–14. https://doi.org/10.1093/nar/gkt1226.

CAS  Article  PubMed  Google Scholar 

Stothard P, Grant JR, Van Domselaar G. Visualizing and comparing circular genomes using the CGView family of tools. Brief Bioinform. 2019;2019(20):1576–82.

Article  Google Scholar 

Carattoli A, Hasman H. PlasmidFinder and in silico pMLST: identification and typing of plasmid replicons in whole-genome sequencing (WGS). In: de la Cruz F, editor. Horizontal gene transfer. New York: Humana; 2020. p. 285–94.

Chapter  Google Scholar 

Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(w1):W16-21. https://doi.org/10.1093/nar/gkw387.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res. 2011;39:W347–52.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403. https://doi.org/10.1101/gr.2289704.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Darling AE, Mau B, Perna NT. Progressivemauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE. 2010;5: e11147. https://doi.org/10.1371/journal.pone.0011147.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chase HR, Gopinath GR, Gangiredla J, Patel IR, Kothary MH, Carter L, Sathyamoorthy V, Lee B, Park E, Yoo YJ, Chung TJ, Choi H, Jun S, Park J, Jeong S, Kim M, Reich F, Klein G, Tall BD. Genome sequences of malonate-positive cronobacter sakazakii serogroup O:2, sequence Type 64 strains CDC 1121-73 and GK1025, isolated from human bronchial wash and a powdered infant formula manufacturing plant. Genome Announc. 2016;4(6):e01072-1116.

Article  PubMed  PubMed Central  Google Scholar 

Power KA, Yan Q, Fox EM, Cooney S, Fanning S. Genome sequence of Cronobacter sakazakii SP291, a persistent thermotolerant isolate derived from a factory producing powdered infant formula. Genome Announc. 2013. https://doi.org/10.1128/genomeA.00082-13.

Article  PubMed  PubMed Central  Google Scholar 

Franco AA, Hu L, Grim CJ, Gopinath G, Sathyamoorthy V, Jarvis KG, Lee C, Sadowski J, Kim J, Kothary MH, McCardell BA, Tall BD. Characterization of putative virulence genes on the related repFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol. 2011;77:3255–67.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tall BD, Gopinath GR, Gangiredla J, Patel IR, Fanning S, Lehner A. Food microbiology fundamentals and frontiers. In: Doyle MP, Diez-Gonzalez F, Hill C, editors. Chapter 14. Cronobacter species. 5th ed. Washington, DC: ASM Press; 2019. p. 389–414.

Google Scholar 

Kucerova E, Clifton SW, Xia XQ, Long F, Porwollik S, Fulton L, Fronick C, Minx P, Kyung K, Warren W, Fulton R, Feng D, Wollam A, Shah N, Bhonagiri V, Nash WE, Hallsworth-Pepin K, Wilson RK, McClelland M, Forsythe SJ. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS ONE. 2010;5(3):9556. https://doi.org/10.1371/journal.pone.0009556.

CAS  Article  Google Scholar 

Ikeda H, Tomizawa J. Prophage P1, and extrachromosomal replication unit Cold Spring Harb. Symp Quant Biol. 1968;33(791):798. https://doi.org/10.1101/sqb.1968.033.01.091.

Article  Google Scholar 

Pfeifer E. Moura de Sousa JA, Touchon M, and Rocha EPC, Bacteria have numerous distinctive groups of phage–plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res. 2021;49:2655–73. https://doi.org/10.1093/nar/gkab064.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Eida AA, Bougouffa S, L’Haridon F, Alam I, Weisskopf L, Bajic VB, Saad MM, Hirt H. Genome insights of the plant-growth promoting bacterium Cronobacter muytjensii Z38 with volatile-mediated antagonistic activity against Phytophthora infestans. Front Microbiol. 2020;11:369. https://doi.org/10.3389/fmicb.2020.00369.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif