Inflammation, Lymphatics, and Cardiovascular Disease: Amplification by Chronic Kidney Disease

Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–9. https://doi.org/10.1056/NEJMoa1500858.

CAS  Article  PubMed  Google Scholar 

Libby P, Nahrendorf M, Swirski FK. Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: an expanded “cardiovascular continuum.” J Am Coll Cardiol. 2016;67(9):1091–103. https://doi.org/10.1016/j.jacc.2015.12.048.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res. 2015;107(3):321–30. https://doi.org/10.1093/cvr/cvv147.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. https://doi.org/10.1056/NEJMoa1707914.

CAS  Article  PubMed  Google Scholar 

Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497–505. https://doi.org/10.1056/NEJMoa1912388.

CAS  Article  PubMed  Google Scholar 

Nidorf SM, Fiolet ATL, Mosterd A, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383(19):1838–47. https://doi.org/10.1056/NEJMoa2021372.

CAS  Article  PubMed  Google Scholar 

Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 2018;15(4):203–14. https://doi.org/10.1038/nrcardio.2017.161.

CAS  Article  PubMed  Google Scholar 

Liberale L, Montecucco F, Schwarz L, Luscher TF, Camici GG. Inflammation and cardiovascular diseases: lessons from seminal clinical trials. Cardiovasc Res. 2021;117(2):411–22. https://doi.org/10.1093/cvr/cvaa211.

CAS  Article  PubMed  Google Scholar 

Adamo L, Rocha-Resende C, Prabhu SD, Mann DL. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol. 2020;17(5):269–85. https://doi.org/10.1038/s41569-019-0315-x.

Article  PubMed  Google Scholar 

Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation. 2001;103(16):2055–9. https://doi.org/10.1161/01.cir.103.16.2055.

CAS  Article  PubMed  Google Scholar 

Kalogeropoulos A, Georgiopoulou V, Psaty BM, et al. Inflammatory markers and incident heart failure risk in older adults: the Health ABC (Health, Aging, and Body Composition) study. J Am Coll Cardiol. 2010;55(19):2129–37. https://doi.org/10.1016/j.jacc.2009.12.045.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Abernethy A, Raza S, Sun JL, et al. Pro-inflammatory biomarkers in stable versus acutely decompensated heart failure with preserved ejection fraction. J Am Heart Assoc. 2018. https://doi.org/10.1161/JAHA.117.007385.

Article  PubMed  PubMed Central  Google Scholar 

Everett BM, Cornel JH, Lainscak M, et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation. 2019;139(10):1289–99. https://doi.org/10.1161/CIRCULATIONAHA.118.038010.

CAS  Article  PubMed  Google Scholar 

May-Zhang LS, Yermalitsky V, Huang J, et al. Modification by isolevuglandins, highly reactive gamma-ketoaldehydes, deleteriously alters high-density lipoprotein structure and function. J Biol Chem. 2018;293(24):9176–87. https://doi.org/10.1074/jbc.RA117.001099.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Boutaud O, Ou JJ, Chaurand P, Caprioli RM, Montine TJ, Oates JA. Prostaglandin H2 (PGH2) accelerates formation of amyloid beta1-42 oligomers. J Neurochem. 2002;82(4):1003–6. https://doi.org/10.1046/j.1471-4159.2002.01064.x.

CAS  Article  PubMed  Google Scholar 

Kirabo A, Fontana V, de Faria AP, et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest. 2014;124(10):4642–56. https://doi.org/10.1172/JCI74084.

Article  PubMed  PubMed Central  Google Scholar 

Tao H, Huang J, Yancey PG, et al. Scavenging of reactive dicarbonyls with 2-hydroxybenzylamine reduces atherosclerosis in hypercholesterolemic Ldlr(-/-) mice. Nat Commun. 2020;11(1):4084. https://doi.org/10.1038/s41467-020-17915-w.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Leopold JA. Antioxidants and coronary artery disease: from pathophysiology to preventive therapy. Coron Artery Dis. 2015;26(2):176–83. https://doi.org/10.1097/MCA.0000000000000187.

Article  PubMed  PubMed Central  Google Scholar 

Roberts LJ 2nd, Oates JA, Linton MF, et al. The relationship between dose of vitamin E and suppression of oxidative stress in humans. Free Radic Biol Med. 2007;43(10):1388–93. https://doi.org/10.1016/j.freeradbiomed.2007.06.019.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kals J, Kampus P, Kals M, et al. Inflammation and oxidative stress are associated differently with endothelial function and arterial stiffness in healthy subjects and in patients with atherosclerosis. Scand J Clin Lab Invest. 2008;68(7):594–601. https://doi.org/10.1080/00365510801930626.

CAS  Article  PubMed  Google Scholar 

Mitchell GF, Guo CY, Benjamin EJ, et al. Cross-sectional correlates of increased aortic stiffness in the community: the Framingham Heart Study. Circulation. 2007;115(20):2628–36. https://doi.org/10.1161/CIRCULATIONAHA.106.667733.

Article  PubMed  Google Scholar 

Mitchell GF, Parise H, Benjamin EJ, et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension. 2004;43(6):1239–45. https://doi.org/10.1161/01.HYP.0000128420.01881.aa.

CAS  Article  PubMed  Google Scholar 

Stephen EA, Venkatasubramaniam A, Good TA, Topoleski LD. The effect of oxidation on the mechanical response and microstructure of porcine aortas. J Biomed Mater Res A. 2014;102(9):3255–62. https://doi.org/10.1002/jbm.a.34998.

CAS  Article  PubMed  Google Scholar 

Soskel NT, Watanabe S, Sandberg LB. Mechanisms of lung injury in the copper-deficient hamster model of emphysema. Chest. 1984;85(6 Suppl):70S-73S. https://doi.org/10.1378/chest.85.6_supplement.70s.

CAS  Article  PubMed  Google Scholar 

Barbaro NR, Foss JD, Kryshtal DO, et al. dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep. 2017;21(4):1009–20. https://doi.org/10.1016/j.celrep.2017.10.002.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–60. https://doi.org/10.1084/jem.20070657.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Madhur MS, Lob HE, McCann LA, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010;55(2):500–7. https://doi.org/10.1161/HYPERTENSIONAHA.109.145094.

CAS  Article  PubMed  Google Scholar 

Marko L, Kvakan H, Park JK, et al. Interferon-gamma signaling inhibition ameliorates angiotensin II-induced cardiac damage. Hypertension. 2012;60(6):1430–6. https://doi.org/10.1161/HYPERTENSIONAHA.112.199265.

CAS  Article  PubMed  Google Scholar 

Wu J, Saleh MA, Kirabo A, et al. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest. 2016;126(1):50–67. https://doi.org/10.1172/JCI80761.

Article  PubMed  Google Scholar 

Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell. 2010;140(4):460–76. https://doi.org/10.1016/j.cell.2010.01.045.

CAS  Article  PubMed  Google Scholar 

Itkin M, Pizarro C, Radtke W, Spurrier E, Rabinowitz DA. Lymphatic management in single-ventricle patients. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2020;23:41–7. https://doi.org/10.1053/j.pcsu.2020.03.001.

Article  PubMed  Google Scholar 

Larue M, Gossett JG, Stewart RD, Backer CL, Mavroudis C, Jacobs ML. Plastic bronchitis in patients with fontan physiology: review of the literature and preliminary experience with fontan conversion and cardiac transplantation. World J Pediatr Congenit Heart Surg. 2012;3(3):364–72. https://doi.org/10.1177/2150135112438107.

Article  PubMed  Google Scholar 

Hess J, Kruizinga K, Bijleveld CM, Hardjowijono R, Eygelaar A. Protein-losing enteropathy after Fontan operation. J Thorac Cardiovasc Surg. 1984;88(4):606–9.

CAS  Article  Google Scholar 

Bode L, Murch S, Freeze HH. Heparan sulfate plays a central role in a dynamic in vitro model of protein-losing enteropathy. J Biol Chem. 2006;281(12):7809–15. https://doi.org/10.1074/jbc.M510722200.

CAS  Article  PubMed  Google Scholar 

Abouelkheir GR, Upchurch BD, Rutkowski JM. Lymphangiogenesis: fuel, smoke, or extinguisher of inflammation’s fire? Exp Biol Med (Maywood). 2017;242(8):884–95. https://doi.org/10.1177/1535370217697385.

CAS  Article  Google Scholar 

Vuorio T, Nurmi H, Moulton K, et al. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34(6):1162–70. https://doi.org/10.1161/ATVBAHA.114.302528.

CAS  Article 

留言 (0)

沒有登入
gif