Reduction of gastrointestinal tract colonization by Klebsiella quasipneumoniae using antimicrobial protein KvarIa

William JB, Amy L. Principles and practice of pediatric infectious diseases. In: Sarah SL, Charles GP, Marc F, editors. Klebsiella and Raoultella species. 5th ed. Amsterdam: Elsevier; 2018. https://doi.org/10.3389/fmicb.2021.670535.

Chapter  Google Scholar 

Monegro AF, Muppidi V, Regunath H. Hospital acquired infections. Treasure Island: StatPearls Publishing; 2021.

Google Scholar 

Imai K, Ishibashi N, Kodana M, Tarumoto N, Sakai J, Kawamura T, Takeuchi S, Taji Y, Ebihara Y, Ikebuchi K, Murakami T, Maeda T, Mitsutake K, Maesaki S. Clinical characteristics in blood stream infections caused by Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae: a comparative study, Japan, 2014–2017. BMC Infect Dis. 2019. https://doi.org/10.1186/s12879-019-4498-x.

Article  PubMed  PubMed Central  Google Scholar 

Hala S, Antony CP, Alshehri M, Althaqafi AO, Alsaedi A, Mufti A, Kaaki M, Alhaj-Hussein BT, Zowawi HM, Al-Amri A, Pain A. First report of Klebsiella quasipneumoniae harboring blaKPC-2 in Saudi Arabia. Antimicrob Resist Infect Control. 2019. https://doi.org/10.1186/s13756-019-0653-9.

Article  PubMed  PubMed Central  Google Scholar 

Long SW, Linson SE, Ojeda Saavedra M, Cantu C, Davis JJ, Brettin T, Olsen RJ. Whole-genome sequencing of human clinical Klebsiella pneumoniae isolates reveals misidentification and misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. MSphere. 2017. https://doi.org/10.1128/mSphereDirect.00290-17.

Article  PubMed  PubMed Central  Google Scholar 

Perlaza-Jiménez L, Wu Q, Torres VVL, Zhang X, Li J, Rocker A, Lithgow T, Zhou T, Vijaykrishna D. Forensic genomics of a novel Klebsiella quasipneumoniae type from a neonatal intensive care unit in China reveals patterns of colonization, evolution and epidemiology. Microb Genom. 2020. https://doi.org/10.1099/mgen.0.000433.

Article  PubMed  PubMed Central  Google Scholar 

Mathers AJ, Crook D, Vaughan A, Barry KE, Vegesana K, Stoesser N, Parikh HI, Sebra R, Kotay S, Walker AS, Sheppard AE. Klebsiella quasipneumoniae provides a window into Carbapenemase Gene transfer, plasmid rearrangements, and patient interactions with the hospital environment. Antimicrob Agents Chemother. 2019. https://doi.org/10.1128/AAC.02513-18.

Article  PubMed  PubMed Central  Google Scholar 

Suzuki Y, Ida M, Kubota H, Ariyoshi T, Murakami K, Kobayashi M, Kato R, Hirai A, Suzuki J, Sadamasu K. Multiple β-lactam resistance gene-carrying plasmid harbored by Klebsiella quasipneumoniae isolated from Urban Sewage in Japan. MSphere. 2019. https://doi.org/10.1128/mSphere.00391-19.

Article  PubMed  PubMed Central  Google Scholar 

Ghequire MGK, De Mot R. Turning over a new leaf: bacteriocins going green. Trends Microbiol. 2018;26(1):1–2.

CAS  Article  Google Scholar 

Zou J, Jiang H, Cheng H, Fang J, Huang G. Strategies for screening, purification and characterization of bacteriocins. Int J Biol Macromol. 2018;117:781–9.

CAS  Article  Google Scholar 

Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev. 2007;71(1):158–229.

CAS  Article  Google Scholar 

Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol. 2016. https://doi.org/10.3389/fmicb.2015.01543.

Article  PubMed  PubMed Central  Google Scholar 

Behrens HM, Six A, Walker D, Kleanthous C. The therapeutic potential of bacteriocins as protein antibiotics. Emerg Top Life Sci. 2017;1(1):65–74.

CAS  Article  Google Scholar 

Denkovskienė E, Paškevičius Š, Misiūnas A, Stočkūnaitė B, Starkevič U, Vitkauskienė A, Hahn-Löbmann S, Schulz S, Giritch A, Gleba Y, Ražanskienė A. Broad and efficient control of Klebsiella Pathogens by peptidoglycan-degrading and pore-forming Bacteriocins Klebicins. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-51969-1.

Article  PubMed  PubMed Central  Google Scholar 

Whitaker DM, Reichley SR, Griffin MJ, Prager K, Richey CA, Kenelty KV, Stevens BN, Lloyd-Smith JO, Johnson CK, Duignan P, Johnson S, Rios C, DeLong R, Halaska B, Rust L, Byrne BA, Struve C, Barnum S, Soto E. Hypermucoviscous Klebsiella Pneumoniae isolates from stranded and wild-caught marine mammals of the us pacific coast: prevalence, phenotype, and genotype. J Wildl Dis. 2018;54(4):659–70.

CAS  Article  Google Scholar 

Hartman LJ, Selby EB, Whitehouse CA, Coyne SR, Jaissle JG, Twenhafel NA, Burke RL, Kulesh DA. Rapid real-time PCR assays for detection of Klebsiella pneumoniae with the rmpA or magA genes associated with the hypermucoviscosity phenotype: screening of nonhuman primates. J Mol Diagn. 2009;11(5):464–71.

CAS  Article  Google Scholar 

Moreno FJ, Mackie AR, Mills EN. Phospholipid interactions protect the milk allergen alpha-lactalbumin from proteolysis during in vitro digestion. J Agric Food Chem. 2005;53(25):9810–6. https://doi.org/10.1021/jf0515227.

CAS  Article  PubMed  Google Scholar 

Mandalari G, Mackie AM, Rigby NM, Wickham MS, Mills EN. Physiological phosphatidylcholine protects bovine beta-lactoglobulin from simulated gastrointestinal proteolysis. Mol Nutr Food Res. 2009;53(Suppl 1):S131–9. https://doi.org/10.1002/mnfr.200800321.

Article  PubMed  Google Scholar 

Eiwegger T, Rigby N, Mondoulet L, Bernard H, Krauth MT, Boehm A, Dehlink E, Valent P, Wal JM, Mills EN, Szépfalusi Z. Gastro-duodenal digestion products of the major peanut allergen Ara h 1 retain an allergenic potential. Clin Exp Allergy. 2006;36(10):1281–8. https://doi.org/10.1111/j.1365-2222.2006.02565.x.

CAS  Article  PubMed  Google Scholar 

Nirwati H, Sinanjung K, Fahrunissa F, Wijaya F, Napitupulu S, Hati VP, Hakim MS, Meliala A, Aman AT, Nuryastuti T. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc. 2019. https://doi.org/10.1186/s12919-019-0176-7.

Article  PubMed  PubMed Central  Google Scholar 

Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019;65(1):34–44.

CAS  Article  Google Scholar 

Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2018. https://doi.org/10.1093/femsre/fux053.

Article  PubMed  Google Scholar 

Martin RM, Bachman MA. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. 2018. https://doi.org/10.3389/fcimb.2018.00004.

Article  PubMed  PubMed Central  Google Scholar 

Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med. 2004;199(5):697–705.

CAS  Article  Google Scholar 

Hsieh PF, Lu YR, Lin TL, Lai LY, Wang JT. Klebsiella pneumoniae type vi secretion system contributes to bacterial competition, cell invasion, type-1 fimbriae expression, and in vivo colonization. J Infect Dis. 2019;219(4):637–47.

CAS  Article  Google Scholar 

Lin H, Wang Q, Liu L, Chen Z, Das R, Zhao Y, Mao D, Luo Y. Colonization of mice with amoxicillin-associated Klebsiella variicola drives inflammation via Th1 induction and Treg inhibition. Front Microbiol. 2020. https://doi.org/10.3389/fmicb.2020.01256.

Article  PubMed  PubMed Central  Google Scholar 

Potter RF, Lainhart W, Twentyman J, Wallace MA, Wang B, Burnham CA, Rosen DA, Dantas G. Population structure, antibiotic resistance, and uropathogenicity of Klebsiella variicola. mBio. 2018. https://doi.org/10.1128/mBio.02481-18.

Article  PubMed  PubMed Central  Google Scholar 

Young TM, Bray AS, Nagpal RK, Caudell DL, Yadav H, Zafar MA. Animal model to study Klebsiella pneumoniae gastrointestinal colonization and host-to-host transmission. Infect Immun. 2020. https://doi.org/10.1128/IAI.00071-20.

Article  PubMed  PubMed Central  Google Scholar 

Sequeira RP, McDonald JAK, Marchesi JR, Clarke TB. Commensal Bacteroidetes protect against Klebsiella pneumoniae colonization and transmission through IL-36 signalling. Nat Microbiol. 2020;5(2):304–13.

CAS  Article  Google Scholar 

Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents. 2017;49(1):1–11.

Article  Google Scholar 

Simons A, Alhanout K, Duval RE. Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms. 2020. https://doi.org/10.3390/microorganisms8050639.

Article  PubMed  PubMed Central  Google Scholar 

Yang SC, Lin CH, Sung CT, Fang JY. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol. 2014. https://doi.org/10.3389/fmicb.2014.00241.

Article  PubMed  PubMed Central  Google Scholar 

Lopetuso LR, Giorgio ME, Saviano A, Scaldaferri F, Gasbarrini A, Cammarota G. Bacteriocins and bacteriophages: therapeutic weapons for gastrointestinal diseases? Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20010183.

Article  PubMed  PubMed Central  Google Scholar 

Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev. 2021. https://doi.org/10.1093/femsre/fuaa039.

Article  PubMed  Google Scholar 

McConnell EL, Basit AW, Murdan S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. J Pharm Pharmacol. 2008;60(1):63–70.

CAS  Article  Google Scholar 

Hatton GB, Yadav V, Basit AW, Merchant HA. Animal farm: considerations in animal gastrointestinal physiology and relevance to drug delivery in humans. J Pharm Sci. 2015;104(9):2747–76.

CAS  Article  Google Scholar 

Kohl KD, Stengel A, Samuni-Blank M, Dearing MD. Effects of anatomy and diet on gastrointestinal pH in rodents. J Exp Zool A Ecol Genet Physiol. 2013;319(4):225–9.

CAS  Article  Google Scholar 

Shimizu K, Seiki I, Goto Y, Murata T. Measurement of the intestinal pH in mice under various conditions reveals alkalization induced by antibiotics. Antibiotics (Basel). 2021. https://doi.org/10.3390/antibiotics10020180.

Article  PubMed Central  Google Scholar 

Carpena N, Richards K, Gonzalez TDJB, Blas AB, Housden NG, Gerasimidis K, Milling SWF, Douce G, Malik DJ, Walker D. Targeted delivery of narrow-spectrum protein antibiotics to the lower gastrointestinal tract in a murine model of Escherichia coli colonization. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.670535.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif