HIV-1 integrase binding to genomic RNA 5′-UTR induces local structural changes in vitro and in virio

1.

Freed EO. HIV-1 assembly, release and maturation. Nat Rev Microbiol. 2015;13(8):484–96.

CAS  PubMed  PubMed Central  Google Scholar 

2.

Sundquist WI, Krausslich HG. HIV-1 assembly, budding, and maturation. Cold Spring Harbor Perspect Med. 2012;2(7):a006924.

Google Scholar 

3.

Pornillos O, Ganser-Pornillos BK. Maturation of retroviruses. Curr Opin Virol. 2019;36:47–55.

CAS  PubMed  PubMed Central  Google Scholar 

4.

Lesbats P, Engelman AN, Cherepanov P, Retroviral. DNA integration. Chem Rev. 2016;116(20):12730–57.

CAS  PubMed  PubMed Central  Google Scholar 

5.

Engelman A. In vivo analysis of retroviral integrase structure and function. Adv Virus Res. 1999;52:411–26.

CAS  Google Scholar 

6.

Elliott JL, Kutluay SB. Going beyond Integration: the emerging role of HIV-1 integrase in virion morphogenesis. Viruses. 2020;12(9):1005.

CAS  PubMed  PubMed Central  Google Scholar 

7.

Engelman A, Englund G, Orenstein JM, Martin MA, Craigie R. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol. 1995;69(5):2729–36.

CAS  PubMed  PubMed Central  Google Scholar 

8.

Jenkins TM, Engelman A, Ghirlando R, Craigie R. A soluble active mutant of HIV-1 integrase: involvement of both the core and carboxyl-terminal domains in multimerization. J Biol Chem. 1996;271(13):7712–8.

CAS  Google Scholar 

9.

Nakamura T, Masuda T, Goto T, Sano K, Nakai M, Harada S. Lack of infectivity of HIV-1 integrase zinc finger-like domain mutant with morphologically normal maturation. Biochem Biophys Res Commun. 1997;239(3):715–22.

CAS  Google Scholar 

10.

Shin CG, Taddeo B, Haseltine WA, Farnet CM. Genetic analysis of the human immunodeficiency virus type 1 integrase protein. J Virol. 1994;68(3):1633–42.

CAS  PubMed  PubMed Central  Google Scholar 

11.

Fontana J, Jurado KA, Cheng N, Ly NL, Fuchs JR, Gorelick RJ, et al. Distribution and redistribution of HIV-1 nucleocapsid protein in immature, mature, and integrase-inhibited virions: a role for integrase in maturation. J Virol. 2015;89(19):9765–80.

CAS  PubMed  PubMed Central  Google Scholar 

12.

Kessl JJ, Kutluay SB, Townsend D, Rebensburg S, Slaughter A, Larue RC, et al. HIV-1 integrase binds the viral RNA genome and is essential during virion morphogenesis. Cell. 2016;166(5):1257-68.e12.

Google Scholar 

13.

Elliott JL, Eschbach JE, Koneru PC, Li W, Puray-Chavez M, Townsend D, et al. Integrase–RNA interactions underscore the critical role of integrase in HIV-1 virion morphogenesis. eLife. 2020;9:e54311.

CAS  PubMed  PubMed Central  Google Scholar 

14.

Quillent C, Borman AM, Paulous S, Dauguet C, Clavel F. Extensive regions of pol are required for efficient human immunodeficiency virus polyprotein processing and particle maturation. Virology. 1996;219(1):29–36.

CAS  Google Scholar 

15.

Le Rouzic E, Bonnard D, Chasset S, Bruneau JM, Chevreuil F, Le Strat F, et al. Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage. Retrovirology. 2013;10:144.

PubMed  PubMed Central  Google Scholar 

16.

Kessl JJ, Jena N, Koh Y, Taskent-Sezgin H, Slaughter A, Feng L, et al. Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem. 2012;287(20):16801–11.

CAS  PubMed  PubMed Central  Google Scholar 

17.

Gupta K, Brady T, Dyer BM, Malani N, Hwang Y, Male F, et al. Allosteric inhibition of human immunodeficiency virus integrase: late block during viral replication and abnormal multimerization involving specific protein domains. J Biol Chem. 2014;289(30):20477–88.

CAS  PubMed  PubMed Central  Google Scholar 

18.

Fader LD, Malenfant E, Parisien M, Carson R, Bilodeau F, Landry S, et al. Discovery of BI 224436, a noncatalytic site integrase inhibitor (NCINI) of HIV-1. ACS Med Chem Lett. 2014;5(4):422–7.

CAS  PubMed  PubMed Central  Google Scholar 

19.

Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, et al. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol. 2010;6(6):442–8.

CAS  Google Scholar 

20.

Wilson TA, Koneru PC, Rebensburg SV, Lindenberger JJ, Kobe MJ, Cockroft NT, et al. An isoquinoline scaffold as a novel class of allosteric HIV-1 integrase inhibitors. ACS Med Chem Lett. 2019;10(2):215–20.

CAS  PubMed  PubMed Central  Google Scholar 

21.

Deng N, Hoyte A, Mansour YE, Mohamed MS, Fuchs JR, Engelman AN, et al. Allosteric HIV-1 integrase inhibitors promote aberrant protein multimerization by directly mediating inter-subunit interactions: structural and thermodynamic modeling studies. Protein Sci. 2016;25(11):1911–7.

CAS  PubMed  PubMed Central  Google Scholar 

22.

Feng L, Sharma A, Slaughter A, Jena N, Koh Y, Shkriabai N, et al. The A128T resistance mutation reveals aberrant protein multimerization as the primary mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem. 2013;288(22):15813–20.

CAS  PubMed  PubMed Central  Google Scholar 

23.

Desimmie BA, Schrijvers R, Demeulemeester J, Borrenberghs D, Weydert C, Thys W, et al. LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology. 2013;10:57.

PubMed  PubMed Central  Google Scholar 

24.

Jurado KA, Wang H, Slaughter A, Feng L, Kessl JJ, Koh Y, et al. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc Natl Acad Sci USA. 2013;110(21):8690–5.

CAS  PubMed  PubMed Central  Google Scholar 

25.

Tsiang M, Jones GS, Niedziela-Majka A, Kan E, Lansdon EB, Huang W, et al. New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J Biol Chem. 2012;287(25):21189–203.

CAS  PubMed  PubMed Central  Google Scholar 

26.

Sharma A, Slaughter A, Jena N, Feng L, Kessl JJ, Fadel HJ, et al. A new class of multimerization selective inhibitors of HIV-1 integrase. PLoS Pathog. 2014;10(5):e1004171.

PubMed  PubMed Central  Google Scholar 

27.

Balakrishnan M, Yant SR, Tsai L, O’Sullivan C, Bam RA, Tsai A, et al. Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS ONE. 2013;8(9):e74163.

CAS  PubMed  PubMed Central  Google Scholar 

28.

Bonnard D, Le Rouzic E, Eiler S, Amadori C, Orlov I, Bruneau JM, et al. Structure-function analyses unravel distinct effects of allosteric inhibitors of HIV-1 integrase on viral maturation and integration. J Biol Chem. 2018;293(16):6172–86.

CAS  PubMed  PubMed Central  Google Scholar 

29.

Madison MK, Lawson DQ, Elliott J, Ozanturk AN, Koneru PC, Townsend D, et al. Allosteric HIV-1 integrase inhibitors lead to premature degradation of the viral RNA genome and integrase in target cells. J Virol. 2017;91(17):e00821-17.

PubMed  PubMed Central  Google Scholar 

30.

Koneru PC, Francis AC, Deng N, Rebensburg SV, Hoyte AC, Lindenberger J, et al. HIV-1 integrase tetramers are the antiviral target of pyridine-based allosteric integrase inhibitors. eLife. 2019;8:e46344.

PubMed  PubMed Central  Google Scholar 

31.

Lu K, Heng X, Summers MF. Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol. 2011;410(4):609–33.

CAS  PubMed  PubMed Central  Google Scholar 

32.

Kuzembayeva M, Dilley K, Sardo L, Hu WS. Life of psi: how full-length HIV-1 RNAs become packaged genomes in the viral particles. Virology. 2014;454–455:362–70.

CAS  Google Scholar 

33.

Abd El-Wahab EW, Smyth RP, Mailler E, Bernacchi S, Vivet-Boudou V, Hijnen M, et al. Specific recognition of the HIV-1 genomic RNA by the Gag precursor. Nat Commun. 2014;5:4304.

CAS  Google Scholar 

34.

Webb JA, Jones CP, Parent LJ, Rouzina I, Musier-Forsyth K. Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: implications for viral genomic RNA packaging. RNA. 2013;19(8):1078–88.

CAS  PubMed  PubMed Central  Google Scholar 

35.

Sarni S, Biswas B, Liu S, Olson ED, Kitzrow JP, Rein A, et al. HIV-1 Gag protein with or without p6 specifically dimerizes on the viral RNA packaging signal. J Biol Chem. 2020;295(42):14391–401.

CAS  PubMed  PubMed Central  Google Scholar 

36.

Smyth RP, Smith MR, Jousset AC, Despons L, Laumond G, Decoville T, et al. In cell mutational interference mapping experiment (in cell MIME) identifies the 5′ polyadenylation signal as a dual regulator of HIV-1 genomic RNA production and packaging. Nucleic Acids Res. 2018;46(9):e57.

PubMed  PubMed Central  Google Scholar 

37.

Nikolaitchik OA, Somoulay X, Rawson JMO, Yoo JA, Pathak VK, Hu WS. Unpaired guanosines in the 5′ untranslated region of HIV-1 RNA Act synergistically to mediate genome packaging. J Virol. 2020;94(21):e00439-20.

PubMed  PubMed Central  Google Scholar 

38.

Wilkinson KA, Gorelick RJ, Vasa SM, Guex N, Rein A, Mathews DH, et al. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol. 2008;6(4):e96.

PubMed  PubMed Central  Google Scholar 

39.

Kutluay SB, Zang T, Blanco-Melo D, Powell C, Jannain D, Errando M, et al. Global changes in the RNA binding specificity of HIV-1 gag regulate virion genesis. Cell. 2014;159(5):1096–109.

CAS  PubMed  PubMed Central  Google Scholar 

40.

Kenyon JC, Prestwood LJ, Lever AM. A novel combined RNA-protein interaction analysis distinguishes HIV-1 Gag protein binding sites from structural change in the viral RNA leader. Sci Rep. 2015;5:14369.

CAS  PubMed  PubMed Central  Google Scholar 

41.

Jones CP, Cantara WA, Olson ED, Musier-Forsyth K. Small-angle X-ray scattering-derived structure of the HIV-1 5′ UTR reveals 3D tRNA mimicry. Proc Natl Acad Sci USA. 2014;111(9):3395–400.

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif