Complex Tumor Spheroids, a Tissue-Mimicking Tumor Model, for Drug Discovery and Precision Medicine

1. National Cancer Institute . Surveillance, Epidemiology, and End Results (SEER) Program, Cancer Stat Facts: Common Cancer Sites. https://seer.cancer.gov/statfacts/html/common.html (accessed 2021-01-12).
Google Scholar2. Rahib, L., Smith, B. D., Aizenberg, R., et al. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014, 74, 2913–2921.
Google Scholar | Crossref | Medline3. Siegel, R. L., Miller, K. D., Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30.
Google Scholar | Crossref | Medline4. Neoptolemos, J. P., Kleeff, J., Michl, P., et al. Therapeutic Developments in Pancreatic Cancer: Current and Future Perspectives. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 333–348.
Google Scholar | Crossref | Medline5. Thomas, D. W., Burns, J., Audette, J., et al. Clinical Development Success Rates 2006–2015. BIO Industry Anal. 2016, 1, 16.
Google Scholar6. Shoemaker, R. H. The NCI60 Human Tumour Cell Line Anticancer Drug Screen. Nat. Rev. Cancer 2006, 6, 813–823.
Google Scholar | Crossref | Medline7. Sutherland, R. M. Cell and Environment Interactions in Tumor Microregions: The Multicell Spheroid Model. Science 1988, 240, 177–184.
Google Scholar | Crossref | Medline8. Gillet, J. P., Calcagno, A. M., Varma, S., et al. Redefining the Relevance of Established Cancer Cell Lines to the Study of Mechanisms of Clinical Anti-Cancer Drug Resistance. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 18708–18713.
Google Scholar | Crossref | Medline9. Narayanan, R. A., Rink, A., Beattie, C. W., et al. Differential Gene Expression Analysis during Porcine Hepatocyte Spheroid Formation. Mamm. Genome 2002, 13, 515–523.
Google Scholar | Crossref | Medline10. Timmins, N. E., Maguire, T. L., Grimmond, S. M., et al. Identification of Three Gene Candidates for Multicellular Resistance in Colon Carcinoma. Cytotechnology 2004, 46, 9–18.
Google Scholar | Crossref | Medline11. Gaedtke, L., Thoenes, L., Culmsee, C., et al. Proteomic Analysis Reveals Differences in Protein Expression in Spheroid versus Monolayer Cultures of Low-Passage Colon Carcinoma Cells. J. Proteome Res. 2007, 6, 4111–4118.
Google Scholar | Crossref | Medline12. He, J., Xiong, L., Li, Q., et al. 3D Modeling of Cancer Stem Cell Niche. Oncotarget 2018, 9, 1326–1345.
Google Scholar | Crossref | Medline13. Weiswald, L. B., Bellet, D., Dangles-Marie, V. Spherical Cancer Models in Tumor Biology. Neoplasia 2015, 17, 1–15.
Google Scholar | Crossref | Medline14. Weigelt, B., Ghajar, C. M., Bissell, M. J. The Need for Complex 3D Culture Models to Unravel Novel Pathways and Identify Accurate Biomarkers in Breast Cancer. Adv. Drug Deliv. Rev. 2014, 69–70, 42–51.
Google Scholar | Crossref | Medline15. Ravi, M., Paramesh, V., Kaviya, S. R., et al. 3D Cell Culture Systems: Advantages and Applications. J. Cell Physiol. 2015, 230, 16–26.
Google Scholar | Crossref | Medline16. Rimann, M., Graf-Hausner, U. Synthetic 3D Multicellular Systems for Drug Development. Curr. Opin. Biotechnol. 2012, 23, 803–809.
Google Scholar | Crossref | Medline17. Dvorak, H. F. Tumors: Wounds That Do Not Heal. Similarities between Tumor Stroma Generation and Wound Healing. N. Engl. J. Med. 1986, 315, 1650–1659.
Google Scholar | Crossref | Medline18. Hanahan, D., Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674.
Google Scholar | Crossref | Medline19. Liang, C., Shi, S., Meng, Q., et al. Do Anti-Stroma Therapies Improve Extrinsic Resistance to Increase the Efficacy of Gemcitabine in Pancreatic Cancer? Cell Mol. Life Sci. 2018, 75, 1001–1012.
Google Scholar | Crossref | Medline20. Liang, C., Shi, S., Meng, Q., et al. Complex Roles of the Stroma in the Intrinsic Resistance to Gemcitabine in Pancreatic Cancer: Where We Are and Where We Are Going. Exp. Mol. Med. 2017, 49, e406.
Google Scholar | Crossref | Medline21. Erkan, M., Reiser-Erkan, C., Michalski, C. W., et al. The Impact of the Activated Stroma on Pancreatic Ductal Adenocarcinoma Biology and Therapy Resistance. Curr. Mol. Med. 2012, 12, 288–303.
Google Scholar | Crossref | Medline22. McMillin, D. W., Negri, J. M., Mitsiades, C. S. The Role of Tumour-Stromal Interactions in Modifying Drug Response: Challenges and Opportunities. Nat Rev Drug Discov 2013, 12, 217–228.
Google Scholar | Crossref | Medline23. Carragher, N., Piccinini, F., Tesei, A., et al. Concerns, Challenges and Promises of High-Content Analysis of 3D Cellular Models. Nat Rev Drug Discov 2018, 17, 606.
Google Scholar | Crossref | Medline24. Yamada, K. M., Cukierman, E. Modeling Tissue Morphogenesis and Cancer in 3D. Cell 2007, 130, 601–610.
Google Scholar | Crossref | Medline25. Hickman, J. A., Graeser, R., de Hoogt, R., et al. Three-Dimensional Models of Cancer for Pharmacology and Cancer Cell Biology: Capturing Tumor Complexity In Vitro/Ex Vivo. Biotechnol. J. 2014, 9, 1115–1128.
Google Scholar | Crossref | Medline26. Tanner, K., Gottesman, M. M. Beyond 3D Culture Models of Cancer. Sci. Transl. Med. 2015, 7, 283ps9.
Google Scholar | Crossref | Medline27. Selby, M., Delosh, R., Laudeman, J., et al. 3D Models of the NCI60 Cell Lines for Screening Oncology Compounds. SLAS Discov. 2017, 22, 473–483.
Google Scholar | Abstract28. Lee, J. M., Mhawech-Fauceglia, P., Lee, N., et al. A Three-Dimensional Microenvironment Alters Protein Expression and Chemosensitivity of Epithelial Ovarian Cancer Cells In Vitro. Lab. Invest. 2013, 93, 528–542.
Google Scholar | Crossref | Medline29. Gutierrez-Barrera, A. M., Menter, D. G., Abbruzzese, J. L., et al. Establishment of Three-Dimensional Cultures of Human Pancreatic Duct Epithelial Cells. Biochem. Biophys. Res. Commun. 2007, 358, 698–703.
Google Scholar | Crossref | Medline30. Weydert, Z., Lal-Nag, M., Mathews-Greiner, L., et al. A 3D Heterotypic Multicellular Tumor Spheroid Assay Platform to Discriminate Drug Effects on Stroma versus Cancer Cells. SLAS Discov. 2020, 25, 265–276.
Google Scholar | Abstract31. Nunes, A. S., Barros, A. S., Costa, E. C., et al. 3D Tumor Spheroids as In Vitro Models to Mimic In Vivo Human Solid Tumors Resistance to Therapeutic Drugs. Biotechnol. Bioeng. 2019, 116, 206–226.
Google Scholar | Crossref | Medline32. Majety, M., Pradel, L. P., Gies, M., et al. Fibroblasts Influence Survival and Therapeutic Response in a 3D Co-Culture Model. PLoS One 2015, 10, e0127948.
Google Scholar | Crossref | Medline33. Jenkins, R. W., Aref, A. R., Lizotte, P. H., et al. Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov. 2018, 8, 196–215.
Google Scholar | Crossref | Medline34. Sant, S., Johnston, P. A. The Production of 3D Tumor Spheroids for Cancer Drug Discovery. Drug Discov. Today Technol. 2017, 23, 27–36.
Google Scholar | Crossref | Medline35. Herter, S., Morra, L., Schlenker, R., et al. A Novel Three-Dimensional Heterotypic Spheroid Model for the Assessment of the Activity of Cancer Immunotherapy Agents. Cancer Immunol. Immunother. 2017, 66, 129–140.
Google Scholar | Crossref | Medline36. Amann, A., Zwierzina, M., Gamerith, G., et al. Development of an Innovative 3D Cell Culture System to Study Tumour–Stroma Interactions in Non–Small Cell Lung Cancer Cells. PLoS One 2014, 9, e92511.
Google Scholar | Crossref | Medline37. Halfter, K., Ditsch, N., Kolberg, H. C., et al. Prospective Cohort Study Using the Breast Cancer Spheroid Model as a Predictor for Response to Neoadjuvant Therapy—The SpheroNEO Study. BMC Cancer 2015, 15, 519.
Google Scholar | Crossref | Medline38. Froeling, F. E., Marshall, J. F., Kocher, H. M. Pancreatic Cancer Organotypic Cultures. J Biotechnol 2010, 148, 16–23.
Google Scholar | Crossref | Medline39. Navas, T., Kinders, R. J., Lawrence, S. M., et al. Clinical Evolution of Epithelial-Mesenchymal Transition in Human Carcinomas. Cancer Res. 2020, 80, 304–318.
Google Scholar | Medline40. Di Veroli, G. Y., Fornari, C., Wang, D., et al. Combenefit: An Interactive Platform for the Analysis and Visualization of Drug Combinations. Bioinformatics 2016, 32, 2866–2868.
Google Scholar | Crossref | Medline41. Zhang, S., Hosaka, M., Yoshihara, T., et al. Phosphorescent Light-Emitting Iridium Complexes Serve as a Hypoxia-Sensing Probe for Tumor Imaging in Living Animals. Cancer Res. 2010, 70, 4490–4498.
Google Scholar | Crossref | Medline42. Foty, R. A., Steinberg, M. S. The Differential Adhesion Hypothesis: A Direct Evaluation. Dev. Biol. 2005, 278, 255–263.
Google Scholar | Crossref | Medline43. Yamada, S., Fuchs, B. C., Fujii, T., et al. Epithelial-to-Mesenchymal Transition Predicts Prognosis of Pancreatic Cancer. Surgery 2013, 154, 946–954.
Google Scholar | Crossref | Medline44. Lamouille, S., Xu, J., Derynck, R. Molecular Mechanisms of Epithelial-Mesenchymal Transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif