Treating Cells as Reagents to Design Reproducible Assays

1. Riss, T. L., Moravec, R. A. Use of Multiple Assay Endpoints to Investigate the Effects on Incubation Time, Dose of Toxin, and Plating Density in Cell-Based Cytotoxicity Assays. Assay Drug Dev. Technol. 2004, 2, 51–62.
Google Scholar | Crossref | Medline2. Coecke, S., Balls, M., Bowe, G., et al. Guidance on Good Cell Culture Practice—A Report of the Second ECVAM Task Force on Good Cell Culture Practice. Altern. Lab. Anim. 2005, 33, 261–287.
Google Scholar | SAGE Journals3. Freshney, R. I. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 7th Ed.; Wiley-Blackwell: Oxford, 2016.
Google Scholar4. Geraghty, R. J., Capes-Davis, A., Davis, J. M. Guidelines for the Use of Cell Lines in Biomedical Research. Br. J. Cancer 2014, 111, 1021–1046.
Google Scholar | Crossref | Medline5. Pamies, D., Bal-Price, A., Simeonov, A., et al. Good Cell Culture Practices for Stem Cells and Stem-Cell-Derived Models. ALTEX 2017, 34, 95–132.
Google Scholar | Medline6. Eskes, C., Boström, A.-C., Bowe, G., et al. Good Cell Culture Practices & In Vitro Toxicology. Toxicol. In Vitro 2017, 45, 272–277.
Google Scholar | Crossref | Medline7. Baust, J. M., Buehring, G. C., Campbell, L., et al. Best Practices in Cell Culture: An Overview. In Vitro Cell. Dev. Biol. Anim. 2017, 53, 669–672.
Google Scholar | Crossref | Medline8. Price, P. J. Best Practices for Media Selection for Mammalian Cells. In Vitro Cell. Dev. Biol. Anim. 2017, 53, 673–681.
Google Scholar | Crossref | Medline9. Nims, R. W., Harbell, J. W. Best Practices for the Use and Evaluation of Animal Serum as a Component of Cell Culture Medium. In Vitro Cell. Dev. Biol. Anim. 2017, 53, 682–690.
Google Scholar | Crossref | Medline10. Leippe, D., Sobol, M., Vidugiris, G., et al. Bioluminescent Assays for Glucose and Glutamine Metabolism: High-Throughput Screening for Changes in Extracellular and Intracellular Metabolites. SLAS Discov. 2017, 22, 366–377.
Google Scholar | Abstract11. NIBSC . International Standards. https://www.nibsc.org/standardisation/international_standards.aspx (accessed May 11, 2021).
Google Scholar12. Robinson, C. J., Gaines-Das, R. The International Standard for Basic Fibroblast Growth Factor (FGF-2); Comparison of Candidate Preparations by In Vitro Bioassays and Immunoassays. Growth Factors 1994, 11, 9–16.
Google Scholar | Crossref | Medline13. Aisenbrey, E. A., Murphy, W. L. Synthetic Alternatives to Matrigel. Nat. Rev. Mater. 2020, 5, 539–551.
Google Scholar | Crossref | Medline14. Hughes, C. S., Postovit, L. M., Lajoie, G. A. Matrigel: A Complex Protein Mixture Required for Optimal Growth of Cell Culture. Proteomics 2010, 10, 1886–1890.
Google Scholar | Crossref | Medline15. American Laboratory . Best Practices for CO2 Incubator Maintenance. https://www.americanlaboratory.com/914-Application-Notes/189342-Best-Practices-for-CO2-Incubator-Maintenance/#:~:text=Clean%20the%20incubator%20one%20to,week%20and%20discard%20unused%20cultures (accessed May 11, 2021).
Google Scholar16. Proper Care and Maintenance for a Cell Culture Incubator . https://assets.thermofisher.com/TFS-Assets/LED/Warranties/TNCO2CAREFEED-EN.pdf (accessed May 11, 2021).
Google Scholar17. Lundholt, B. K., Scudder, K, M., Pagliaro, L. A Simple Technique for Reducing Edge Effect in Cell-Based Assays. J. Biomol. Screen. 2003, 8, 566–570.
Google Scholar | SAGE Journals18. Eppendorf Cell Profile . https://handling-solutions.eppendorf.com/fileadmin/Community/Cell_Handling/PDF/Eppendorf_Cell_Profile.pdf (accessed May 11, 2021).
Google Scholar19. Olarerin-George, A. O., Hogenesch, J. B. Assessing the Prevalence of Mycoplasma Contamination in Cell Culture via a Survey of NCBI’s RNA-seq Archive. Nucl. Acids Res. 2015, 43, 2535–2542.
Google Scholar | Crossref | Medline20. Armstrong, S. E., Mariano, J. A., Lundin, D. J. The Scope of Mycoplasma Contamination within the Biopharmaceutical Industry. Biologicals 2010, 38, 211–213.
Google Scholar | Crossref | Medline21. Young, L., Sung, J., Stacey, G., Masters, J. R. Detection of Mycoplasma in Cell Cultures. Nat. Protoc. 2010, 5, 929–934.
Google Scholar | Crossref | Medline22. Gartler, S. Apparent HeLa Cell Contamination of Human Heteroploid Cell Lines. Nature 1968, 217, 750–751.
Google Scholar | Crossref | Medline23. Lacroix, M. Persistent Use of “False” Cell Lines. Int. J. Cancer 2008, 122, 1–4.
Google Scholar | Crossref | Medline24. Korch, C., Hall, E. H., Dirks, W. G., et al. Authentication of M14 Melanoma Cell Line Proves Misidentification of MDA-MB-435 Breast Cancer Cell Line. Int. J. Cancer 2008, 142, 561–572.
Google Scholar | Crossref25. Reid, Y., Storts, D., Riss, T., et al. Authentication of Human Cell Lines by STR DNA Profiling Analysis. In Assay Guidance Manual; Markossian, S., Sittampalam, G. S., Grossman, A., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, 2013.
Google Scholar26. Nims, R. W., Reid, Y. Best Practices for Authenticating Cell Lines. In Vitro Cell. Dev. Biol. Anim. 2017, 53, 880–887.
Google Scholar | Crossref | Medline27. Huang, Y., Liu, Y., Zheng, C., et al. Investigation of Cross-Contamination and Misidentification of 278 Widely Used Tumor Cell Lines. PLoS One 2017, 12, e0170384.
Google Scholar28. ICLAC . Guide to Human Cell Line Authentication. https://iclac.org/resources/human-cell-line-authentication/ (accessed May 11, 2021).
Google Scholar29. Enhancing Reproducibility through Rigor and Transparency . https://grants.nih.gov/grants/guide/notice-files/NOT-OD-15-103.html (accessed May 11, 2021).
Google Scholar30. NIH . Enhancing Reproducibility Guidelines: What You Need to Know. https://grants.nih.gov/reproducibility/documents/grant-guideline.pdf (accessed May 11, 2021).
Google Scholar31. ICLAC . Database of Cross-Contaminated or Misidentified Cell Lines. http://iclac.org/wp-content/uploads/Cross-Contaminations-v8_0.pdf (accessed May 11, 2021).
Google Scholar32. Cell Line Authentication . https://www.promega.com/Resources/Guides/cell-biology/cell-line-authentication/ (accessed May 11, 2021).
Google Scholar33. Haas, J. H., Eastwood, B. J., Iversen, P. W., et al. Minimum Significant Ratio—A Statistic to Assess Assay Variability. In Assay Guidance Manual; Markossian, S., Sittampalam, G. S., Grossman, A., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, 2017.
Google Scholar34. Zaman, G. J., de Roos, J. A., Blomenrohr, M., et al. Cryopreserved Cells Facilitate Cell-Based Drug Discovery. Drug Discov. Today 2007, 12, 521–526.
Google Scholar | Crossref | Medline35. ATCC . Animal Cell Culture Guide. Cryopreservation. https://www.atcc.org/en/Documents/Marketing_Literature/Animal_Cell_Culture_Guide/Cryopreservation.aspx (accessed May 11, 2021).
Google Scholar36. Cheng, Z. J., Garvin, D., Paguio, A, et al. Development of a Robust Reporter-Based ADCC Assay with Frozen, Thaw-and-Use Cells to Measure Fc Effector Function of Therapeutic Antibodies. J. Immunol. Meth. 2014, 414, 69–81.
Google Scholar | Crossref | Medline37. Riss, T. L., Moravec, R. A., Niles, A. L., et al. Cell Viability Assays. In Assay Guidance Manual; Markossian, S., Sittampalam, G. S., Grossman, A., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, 2016.
Google Scholar38. Riss, T., Niles, A., Moravec, R., et al. Cytotoxicity Assays: In Vitro Methods to Measure Dead Cells. In Assay Guidance Manual; Markossian, S., Sittampalam, G. S., Grossman, A., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, 2019.
Google Scholar39. Chiaraviglio, L., Kirby, J. E. Evaluation of Impermeant, DNA-Binding Dye Fluorescence as a Real-Time Readout of Eukaryotic Cell Toxicity in a High Throughput Screening Format. Assay Drug Dev. Technol. 2014, 12, 219–228.
Google Scholar | Crossref | Medline40. Duellman, S., Shultz, J., Vidugiris, G., et al. A New Luminescent Assay for Detection of Reactive Oxygen Species. Promega Corporation. https://www.promega.com/resources/pubhub/a-luminescent-assay-for-detection-of-reactive-oxygen-species/ (accessed May 11, 2021).
Google Scholar41. Kelts, J., Cali, J., Duellman, S., et al. Altered Cytotoxicity of ROS‑Inducing Compounds by Sodium Pyruvate in Cell Culture Medium Depends on the Location of ROS Generation. SpringerPlus 2015, 4, 269.
Google Scholar | Crossref | Medline42. Hsieh, J.-H., Huang, R., Lin, J.-A., et al. Real-time Cell Toxicity Profiling of Tox21 10K Compounds Reveals Cytotoxicity Dependent Toxicity Pathway Linkage. PLoS One 2017, 12, e0177902.
Google Scholar43. Gautam, P., Karhinen, L., Szwajda, A., et al. Identification of Selective Cytotoxic and Synthetic Lethal Drug Responses in Triple Negative Breast Cancer Cells. Mol. Cancer 2016, 15, 34.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif