Acoustic Ejection Mass Spectrometry: A Fully Automatable Technology for High-Throughput Screening in Drug Discovery

1. Adam, G. C., Meng, J., Rizzo, J. M., et al. Use of High-Throughput Mass Spectrometry to Reduce False Positives in Protease UHTS Screens. J. Biomol. Screen. 2014, 20, 212–222.
Google Scholar | SAGE Journals2. Bretschneider, T., Luippold, A. H., Romig, H., et al. Ultrafast and Predictive Mass Spectrometry–Based Autotaxin Assays for Label-Free Potency Screening. SLAS Discov. 2016, 22, 425–432.
Google Scholar3. McLaren, D. G., Shah, V., Wisniewski, T., et al. High-Throughput Mass Spectrometry for Hit Identification: Current Landscape and Future Perspectives. SLAS Discov. 2020, 26, 168–191.
Google Scholar4. Winter, M., Ries, R., Kleiner, C., et al. Automated MALDI Target Preparation Concept: Providing Ultra-High-Throughput Mass Spectrometry-Based Screening for Drug Discovery. SLAS Technol. 2019, 24, 209–221.
Google Scholar | Abstract5. Winter, M., Bretschneider, T., Thamm, S., et al. Chemical Derivatization Enables MALDI-TOF-Based High-Throughput Screening for Microbial Trimethylamine (TMA)-Lyase Inhibitors. SLAS Discov. 2019, 24, 2472555219838216.
Google Scholar6. Winter, M., Bretschneider, T., Kleiner, C., et al. Establishing MALDI-TOF as Versatile Drug Discovery Readout to Dissect the PTP1B Enzymatic Reaction. SLAS Discov. 2018, 23, 561–573.
Google Scholar | Abstract7. Heap, R. E., Hope, A. G., Pearson, L. A., et al. Identifying Inhibitors of Inflammation: A Novel High-Throughput MALDI-TOF Screening Assay for Salt-Inducible Kinases (SIKs). SLAS Discov. 2017, 22, 1193–1202.
Google Scholar | Abstract8. Cesare, V. D., Johnson, C., Barlow, V., et al. The MALDI-TOF E2/E3 Ligase Assay as Universal Tool for Drug Discovery in the Ubiquitin Pathway. Cell. Chem. Biol. 2018, 25, 1117–1127.e4.
Google Scholar | Crossref | Medline9. Guitot, K., Drujon, T., Burlina, F., et al. A Direct Label-Free MALDI-TOF Mass Spectrometry Based Assay for the Characterization of Inhibitors of Protein Lysine Methyltransferases. Anal. Bioanal. Chem. 2017, 409, 3767–3777.
Google Scholar | Crossref | Medline10. Simon, R. P., Winter, M., Kleiner, C., et al. MALDI-TOF Mass Spectrometry-Based High-Throughput Screening for Inhibitors of the Cytosolic DNA Sensor CGAS. SLAS Discov. 2020, 25, 372–383.
Google Scholar | Medline11. Ritorto, M. S., Ewan, R., Perez-Oliva, A. B., et al. Screening of DUB Activity and Specificity by MALDI-TOF Mass Spectrometry. Nat. Commun. 2014, 5, 4763.
Google Scholar | Crossref | Medline12. Patel, K., Sherrill, J., Mrksich, M., et al. Discovery of SIRT3 Inhibitors Using SAMDI Mass Spectrometry. J. Biomol. Screen. 2015, 20, 842–848.
Google Scholar | SAGE Journals13. VanderPorten, E. C., Scholle, M. D., Sherrill, J., et al. Identification of Small-Molecule Noncovalent Binders Utilizing SAMDI Technology. SLAS Discov. 2017, 22, 1211–1217.
Google Scholar | Abstract14. Simon, R. P., Winter, M., Kleiner, C., et al. MALDI-TOF-Based Affinity Selection Mass Spectrometry for Automated Screening of Protein-Ligand Interactions at High Throughput. SLAS Discov. 2021, 26, 44–57.
Google Scholar | Medline15. Unger, M. S., Schumacher, L., Enzlein, T., et al. Direct Automated MALDI Mass Spectrometry Analysis of Cellular Transporter Function: Inhibition of OATP2B1 Uptake by 294 Drugs. Anal. Chem. 2020, 92, 11851–11859.
Google Scholar | Crossref | Medline16. Luippold, A. H., Arnhold, T., Jörg, W., et al. Application of a Rapid and Integrated Analysis System (RIAS) as a High-Throughput Processing Tool for In Vitro ADME Samples by Liquid Chromatography/Tandem Mass Spectrometry. J. Biomol. Screen. 2010, 16, 370–377.
Google Scholar | SAGE Journals17. Wu, X., Wang, J., Tan, L., et al. In Vitro ADME Profiling Using High-Throughput RapidFire Mass Spectrometry. J. Biomol. Screen. 2012, 17, 761–772.
Google Scholar | SAGE Journals18. Rye, P. T., Frick, L. E., Ozbal, C. C., et al. Advances in Label-Free Screening Approaches for Studying Histone Acetyltransferases. J. Biomol. Screen. 2011, 16, 1186–1195.
Google Scholar | SAGE Journals19. VanderPorten, E., Frick, L., Turincio, R., et al. Label-Free High-Throughput Assays to Screen and Characterize Novel Lactate Dehydrogenase Inhibitors. Anal. Biochem. 2013, 441, 115–122.
Google Scholar | Crossref | Medline20. Bretschneider, T., Ozbal, C., Holstein, M., et al. RapidFire BLAZE-Mode Is Boosting ESI-MS toward High-Throughput-Screening. SLAS Technol. 2019, 24, 386–393.
Google Scholar | Abstract21. Sinclair, I., Stearns, R., Pringle, S., et al. Novel Acoustic Loading of a Mass Spectrometer. J. Lab. Autom. 2015, 21, 19–26.
Google Scholar | SAGE Journals22. Sinclair, I., Bachman, M., Addison, D., et al. Acoustic Mist Ionization Platform for Direct and Contactless Ultrahigh-Throughput Mass Spectrometry Analysis of Liquid Samples. Anal. Chem. 2019, 91, 3790–3794.
Google Scholar | Crossref | Medline23. Bachman, M., Sinclair, I., Ivanov, D., et al. Information-Rich High-Throughput Cellular Assays Using Acoustic Mist Ionisation Mass Spectrometry. Analyst 2020, 146, 315–321.
Google Scholar | Crossref24. Belov, A. M., Kozole, J., Bean, M. F., et al. Acoustic Mist Ionization-Mass Spectrometry: A Comparison to Conventional High-Throughput Screening and Compound Profiling Platforms. Anal. Chem. 2020, 92, 13847–13854.
Google Scholar | Crossref | Medline25. Berkel, G. J. V., Kertesz, V. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2015, 29, 1749–1756.
Google Scholar | Crossref26. Liu, C., Berkel, G. J. V., Cox, D. M., et al. Operational Modes and Speed Considerations of an Acoustic Droplet Dispenser for Mass Spectrometry. Anal. Chem. 2020, 92, 15818–15826.
Google Scholar | Crossref | Medline27. Zhang, H., Liu, C., Hua, W., et al. Acoustic Ejection Mass Spectrometry for High-Throughput Analysis. BioRxiv 2020. DOI: 10.1101/2020.01.28.923938.
Google Scholar | Crossref28. DiRico, K. J., Hua, W., Liu, C., et al. Ultra-High-Throughput Acoustic Droplet Ejection-Open Port Interface-Mass Spectrometry for Parallel Medicinal Chemistry. ACS Med. Chem. Lett. 2020, 11, 1101–1110.
Google Scholar | Crossref | Medline29. Zhang, J., Zhang, Y., Liu, C., et al. Acoustic Ejection/Full-Scan Mass Spectrometry Analysis for High-Throughput Compound Quality Control. SLAS Technol. 2020, 26, 178–188.
Google Scholar | Medline30. Wen, X., Liu, C., Ghislain, L., et al. Direct Analysis from Phase-Separated Liquid Samples Using ADE-OPI-MS: Applicability to High-Throughput Screening for Inhibitors of Diacylglycerol Acyltransferase 2. Anal. Chem. 2021, 93, 6071–6079.
Google Scholar | Crossref | Medline31. Häbe, T. T., Liu, C., Covey, T. R., et al. Ultrahigh-Throughput ESI-MS: Sampling Pushed to Six Samples per Second by Acoustic Ejection Mass Spectrometry. Anal. Chem. 2020, 92, 12242–12249.
Google Scholar | Crossref | Medline32. Hall, J., Ralph, E. C., Shanker, S., et al. The Catalytic Mechanism of Cyclic GMP-AMP Synthase (CGAS) and Implications for Innate Immunity and Inhibition. Protein Sci. 2017, 26, 2367–2380.
Google Scholar | Crossref | Medline33. Ablasser, A., Chen, Z. J. CGAS in Action: Expanding Roles in Immunity and Inflammation. Science 2019, 363, eaat8657.
Google Scholar | Crossref | Medline34. Hall, J., Brault, A., Vincent, F., et al. Discovery of PF-06928215 as a High Affinity Inhibitor of CGAS Enabled by a Novel Fluorescence Polarization Assay. PLoS One 2017, 12, e0184843.
Google Scholar | Crossref | Medline35. Leveridge, M., Buxton, R., Argyrou, A., et al. Demonstrating Enhanced Throughput of RapidFire Mass Spectrometry through Multiplexing Using the JmjD2d Demethylase as a Model System. J. Biomol. Screen. 2013, 19, 278–286.
Google Scholar | SAGE Journals

留言 (0)

沒有登入
gif