Luminescence Energy Transfer–Based Screening and Target Engagement Approaches for Chemical Biology and Drug Discovery

1. Fan, F., Wood, K. V. Bioluminescent Assays for High-Throughput Screening. Assay Drug Dev. Technol. 2007, 5, 127–136.
Google Scholar | Crossref | Medline2. Inglese, J., Johnson, R. L., Simeonov, A.; et al. High-Throughput Screening Assays for the Identification of Chemical Probes. Nat. Chem. Biol. 2007, 3, 466–479.
Google Scholar | Crossref | Medline3. Pfleger, K. D., Eidne, K. A. Illuminating Insights into Protein-Protein Interactions Using Bioluminescence Resonance Energy Transfer (BRET). Nat. Methods 2006, 3, 165–174.
Google Scholar | Crossref | Medline4. Degorce, F., Card, A., Soh, S.; et al. HTRF: A Technology Tailored for Drug Discovery—A Review of Theoretical Aspects and Recent Applications. Curr. Chem. Genomics 2009, 3, 22–32.
Google Scholar | Crossref | Medline5. Rossant, C. J., Matthews, C., Neal, F.; et al. Versatility of Homogeneous Time-Resolved Fluorescence Resonance Energy Transfer Assays for Biologics Drug Discovery. J. Biomol. Screen. 2015, 20, 508–518.
Google Scholar | SAGE Journals6. Wu, P., Brand, L. Resonance Energy Transfer: Methods and Applications. Anal. Biochem. 1994, 218, 1–13.
Google Scholar | Crossref | Medline7. El Khamlichi, C., Reverchon-Assadi, F., Hervouet-Coste, N.; et al. Bioluminescence Resonance Energy Transfer as a Method to Study Protein-Protein Interactions: Application to G Protein Coupled Receptor Biology. Molecules 2019, 24, 537.
Google Scholar | Crossref8. Yeh, H.-W., Ai, H.-W. Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors. Annu. Rev. Anal. Chem. 2019, 12, 129–150.
Google Scholar | Crossref | Medline9. Bacart, J., Corbel, C., Jockers, R.; et al. The BRET Technology and Its Application to Screening Assays. Biotechnol. J. 2008, 3, 311–324.
Google Scholar | Crossref | Medline10. Hall, M. P., Unch, J., Binkowski, B. F.; et al. Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate. ACS Chem. Biol. 2012, 7, 1848–1857.
Google Scholar | Crossref | Medline11. Stoddart, L. A., Kilpatrick, L. E., Hill, S. J. NanoBRET Approaches to Study Ligand Binding to GPCRs and RTKs. Trends Pharmacol. Sci. 2018, 39, 136–147.
Google Scholar | Crossref | Medline12. Stoddart, L. A., Johnstone, E. K. M., Wheal, A. J.; et al. Application of BRET to Monitor Ligand Binding to GPCRs. Nat. Methods 2015, 12, 661–663.
Google Scholar | Crossref | Medline13. England, C. G., Ehlerding, E. B., Cai, W. NanoLuc: A Small Luciferase Is Brightening up the Field of Bioluminescence. Bioconjug. Chem. 2016, 27, 1175–1187.
Google Scholar | Crossref | Medline14. Chen, Y., Wang, L., Cheng, X.; et al. An Ultrasensitive System for Measuring the USPs and OTULIN Activity Using Nanoluc as a Reporter. Biochem. Biophys. Res. Commun. 2014, 455, 178–183.
Google Scholar | Crossref | Medline15. Heise, K., Oppermann, H., Meixensberger, J.; et al. Dual Luciferase Assay for Secreted Luciferases Based on Gaussia and NanoLuc. Assay Drug. Dev. Technol. 2013, 11, 244–252.
Google Scholar | Crossref | Medline16. Stacer, A. C., Nyati, S., Moudgil, P.; et al. NanoLuc Reporter for Dual Luciferase Imaging in Living Animals. Mol. Imaging 2013, 12, 1–13.
Google Scholar | SAGE Journals17. Zhao, J., Nelson, T. J., Vu, Q.; et al. Self-Assembling NanoLuc Luciferase Fragments as Probes for Protein Aggregation in Living Cells. ACS Chem. Biol. 2015, 11, 132–138.
Google Scholar | Crossref | Medline18. Verhoef, L. G., Mattioli, M., Ricci, F.; et al. Multiplex Detection of Protein–Protein Interactions Using a Next Generation Luciferase Reporter. Biochim. Biophys. Acta. Mol. Cell. Res. 2016, 1863, 284–292.
Google Scholar | Crossref19. Mohiuddin, I. S., Wei, S. J., Yang, I. H.; et al. Development of Cell-Based High Throughput Luminescence Assay for Drug Discovery in Inhibiting OCT4/DNA-PKcs and OCT4-MK2 Interactions. Biotechnol. Bioeng. 2021, 118, 1987–2000.
Google Scholar | Crossref | Medline20. Johnstone, E. K. M., See, H. B., Abhayawardana, R. S.; et al. Investigation of Receptor Heteromers Using NanoBRET Ligand Binding. Int. J. Mol. Sci. 2021, 22, 1082.
Google Scholar | Crossref | Medline21. Ayoub, M. A., Pfleger, K. D. Recent Advances in Bioluminescence Resonance Energy Transfer Technologies to Study GPCR Heteromerization. Curr. Opin. Pharmacol. 2010, 10, 44–52.
Google Scholar | Crossref | Medline22. Del Piccolo, N., Hristova, K. Quantifying the Interaction between EGFR Dimers and Grb2 in Live Cells. Biophys. J. 2017, 113, 1353–1364.
Google Scholar | Crossref | Medline23. Marabese, M., Caiola, E., Garassino, M. C.; et al. G48A, a New KRAS Mutation Found in Lung Adenocarcinoma. J. Thorac. Oncol. 2016, 11, 1170–1175.
Google Scholar | Crossref | Medline24. Chen, L., Cheng, B., Sun, Q.; et al. Ligand-Based Optimization and Biological Evaluation of N-(2,2,2-trichloro-1-(3-phenylthioureido)ethyl)Acetamide Derivatives as Potent Intrinsically Disordered Protein c-Myc Inhibitors. Bioorg. Med. Chem. Lett. 2021, 31, 127711.
Google Scholar | Crossref | Medline25. Ran, F. A., Hsu, P. D., Wright, J.; et al. Genome Engineering Using the CRISPR-Cas9 System. Nat. Protoc. 2013, 8, 2281–2308.
Google Scholar | Crossref | Medline26. Busillo, J. M., Armando, S., Sengupta, R.; et al. Site-Specific Phosphorylation of CXCR4 Is Dynamically Regulated by Multiple Kinases and Results in Differential Modulation of CXCR4 Signaling. J. Biol. Chem. 2010, 285, 7805–7817.
Google Scholar | Crossref | Medline27. White, C. W., Vanyai, H. K., See, H. B.; et al. Using NanoBRET and CRISPR/Cas9 to Monitor Proximity to a Genome-Edited Protein in Real-Time. Sci. Rep. 2017, 7, 3187.
Google Scholar | Crossref | Medline28. Los, G. V., Encell, L. P., McDougall, M. G.; et al. HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol. 2008, 3, 373–382.
Google Scholar | Crossref | Medline29. England, C. G., Luo, H., Cai, W. HaloTag Technology: A Versatile Platform for Biomedical Applications. Bioconjug. Chem. 2015, 26, 975–986.
Google Scholar | Crossref | Medline30. Machleidt, T., Woodroofe, C. C., Schwinn, M. K.; et al. NanoBRET—A Novel BRET Platform for the Analysis of Protein-Protein Interactions. ACS Chem. Biol. 2015, 10, 1797–1804.
Google Scholar | Crossref | Medline31. Ong, L. L., Vasta, J. D., Monereau, L.; et al. A High-Throughput BRET Cellular Target Engagement Assay Links Biochemical to Cellular Activity for Bruton’s Tyrosine Kinase. SLAS Discov. 2020, 25, 176–185.
Google Scholar | Abstract32. Phillipou, A. N., Lay, C. S., Carver, C. E.; et al. Cellular Target Engagement Approaches to Monitor Epigenetic Reader Domain Interactions. SLAS Discov. 2020, 25, 163–175.
Google Scholar | Abstract33. Bouzo-Lorenzo, M., Stoddart, L. A., Xia, L.; et al. A Live Cell NanoBRET Binding Assay Allows the Study of Ligand-Binding Kinetics to the Adenosine A(3) Receptor. Purinergic Signal. 2019, 15, 139–153.
Google Scholar | Crossref | Medline34. Jin, H. Y., Tudor, Y., Choi, K.; et al. High-Throughput Implementation of the NanoBRET Target Engagement Intracellular Kinase Assay to Reveal Differential Compound Engagement by SIK2/3 Isoforms. SLAS Discov. 2020, 25, 215–222.
Google Scholar | Abstract35. Funderburk, S. F., Wang, Q. J., Yue, Z. The Beclin 1-VPS34 Complex—at the Crossroads of Autophagy and Beyond. Trends Cell Biol. 2010, 20, 355–362.
Google Scholar | Crossref | Medline36. Pavlinov, I., Salkovski, M., Aldrich, L. N. Beclin 1-ATG14L Protein-Protein Interaction Inhibitor Selectively Inhibits Autophagy through Disruption of VPS34 Complex I. J. Am. Chem. Soc. 2020, 142, 8174–8182.
Google Scholar | Crossref | Medline37. Sakyiamah, M. M., Nomura, W., Kobayakawa, T.; et al. Development of a NanoBRET-Based Sensitive Screening Method for CXCR4 Ligands. Bioconjug. Chem. 2019, 30, 1442–1450.
Google Scholar | Crossref | Medline38. Vasta, J. D., Corona, C. R., Wilkinson, J.; et al. Quantitative, Wide-Spectrum Kinase Profiling in Live Cells for Assessing the Effect of Cellular ATP on Target Engagement. Cell Chem. Biol. 2018, 25, 206–214.e11.
Google Scholar | Crossref | Medline39. Elkins, J. M., Fedele, V., Szklarz, M.; et al. Comprehensive Characterization of the Published Kinase Inhibitor Set. Nat. Biotechnol. 2016, 34, 95–103.
Google Scholar | Crossref | Medline40. Alcobia, D. C., Ziegler, A. I., Kondrashov, A.; et al. Visualizing Ligand Binding to a GPCR In Vivo Using NanoBRET. iScience 2018, 6, 280–288.
Google Scholar | Crossref | Medline41. Robers, M. B., Dart, M. L., Woodroofe, C. C.; et al. Target Engagement and Drug Residence Time Can Be Observed in Living Cells with BRET. Nat. Commun. 2015, 6, 10091.
Google Scholar | Crossref | Medline42. Riching, K. M., Mahan, S., Corona, C. R.; et al. Quantitative Live-Cell Kinetic Degradation and Mechanistic Profiling of PROTAC Mode of Action. ACS Chem. Biol. 2018, 13, 2758–2770.
Google Scholar | Crossref | Medline43. Zou, Y., Ma, D., Wang, Y. The PROTAC Technology in Drug Development. Cell Biochem. Funct. 2019, 37, 21–30.
Google Scholar | Crossref | Medline44. Ottis, P., Crews, C. M. Proteolysis-Targeting Chimeras: Induced Protein Degradation as a Therapeutic Strategy. ACS Chem. Biol. 2017, 12, 892–898.
Google Scholar | Crossref | Medline45. Sun, X., Gao, H., Yang, Y.; et al. PROTACs: Great Opportunities for Academia and Industry. Signal Transduct. Target Ther. 2019, 4, 64.
Google Scholar | Crossref | Medline46. Guo, W.-H., Qi, X., Yu, X.; et al. Enhancing Intracellular Accumulation and Target Engagement of PROTACs with Reversible Covalent Chemistry. Nat. Commun. 2020, 11, 4268–4268.
Google Scholar | Crossref | Medline47. Baker, J. G., Middleton, R., Adams, L.; et al. Influence of Fluorophore and Linker Composition on the Pharmacology of Fluorescent Adenosine A1 Receptor Ligands. Br. J. Pharmacol. 2010, 159, 772–786.
Google Scholar | Crossref | Medline48. Vernall, A. J., Stoddart, L. A., Briddon, S. J.; et al. Conversion of a Non-selective Adenosine Receptor Antagonist into A3-Selective High Affinity Fluorescent Probes Using Peptide-Based Linkers. Org. Biomol. Chem. 2013, 11, 5673–5682.
Google Scholar | Crossref | Medline49. Gonçalves, M. S. Fluorescent Labeling of Biomolecules with Organic Probes. Chem. Rev. 2009, 109, 190–212.
Google Scholar | Crossref | Medline50. Ziessel, R., Ulrich, G., Harriman, A. The Chemistry of Bodipy: A New El Dorado for Fluorescence Tools. New J. Chem. 2007, 31, 496–501.
Google Scholar | Crossref51. Ullman, E. F., Kirakossian, H., Singh, S.; et al. Luminescent Oxygen Channeling Immunoassay: Measurement of Particle Binding Kinetics by Chemiluminescence. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 5426–5430.
Google Scholar | Crossref | Medline52. Eglen, R. M., Reisine, T., Roby, P.; et al. The Use of AlphaScreen Technology in HTS: Current Status. Curr. Genom.

留言 (0)

沒有登入
gif