Engineering-enhanced CAR T cells for improved cancer therapy

1.

Bird, R. E. et al. Single-chain antigen-binding proteins. Science 242, 423–426 (1988).

CAS  PubMed  Article  PubMed Central  Google Scholar 

2.

June, C. H., Ledbetter, J. A., Gillespie, M. M., Lindsten, T. & Thompson, C. B. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol. Cell Biol. 7, 4472–4481 (1987).

CAS  PubMed  PubMed Central  Google Scholar 

3.

Brentjens, R. J. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. 9, 279–286 (2003).

CAS  PubMed  Article  PubMed Central  Google Scholar 

4.

Mullis, K. B. The unusual origin of the polymerase chain reaction. Sci. Am. 262, 56–65 (1990).

CAS  PubMed  Article  PubMed Central  Google Scholar 

5.

Kershaw, M. H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).

CAS  PubMed  PubMed Central  Article  Google Scholar 

6.

Lamers, C. H. et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol. 24, e20–e22 (2006).

PubMed  Article  PubMed Central  Google Scholar 

7.

Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

CAS  PubMed  PubMed Central  Article  Google Scholar 

8.

Sadelain, M.Chimeric antigen receptors: a paradigm shift in immunotherapy. Ann. Rev. Cancer Biol. 1, 447–466 (2017).

Article  Google Scholar 

9.

Filley, A. C., Henriquez, M. & Dey, M.CART immunotherapy: development, success, and translation to malignant gliomas and other solid tumors.Front. Oncol. 8, 453 (2018).

PubMed  PubMed Central  Article  Google Scholar 

10.

Milone, M. C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

11.

Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

12.

Zhao, Y. et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol. 183, 5563–5574 (2009).

CAS  PubMed  Article  Google Scholar 

13.

Savoldo, B. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest. 121, 1822–1826 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

14.

Friedmann-Morvinski, D., Bendavid, A., Waks, T., Schindler, D. & Eshhar, Z. Redirected primary T cells harboring a chimeric receptor require costimulation for their antigen-specific activation. Blood 105, 3087–3093 (2005).

CAS  PubMed  Article  PubMed Central  Google Scholar 

15.

Brocker, T. Chimeric Fv-ζ or Fv-ε receptors are not sufficient to induce activation or cytokine production in peripheral T cells. Blood 96, 1999–2001 (2000).

CAS  PubMed  Article  PubMed Central  Google Scholar 

16.

Mitsuyasu, R. T. et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4ζ gene-modified autologous CD4+ and CD8+ T cells in human immunodeficiency virus-infected subjects. Blood 96, 785–793 (2000).

CAS  PubMed  Article  PubMed Central  Google Scholar 

17.

Scholler, J. et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med. 4, 132ra153 (2012).

Article  Google Scholar 

18.

Uckun, F. et al. Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood 71, 13–29 (1988).

CAS  PubMed  Article  PubMed Central  Google Scholar 

19.

Ishiura, N. et al. Differential phosphorylation of functional tyrosines in CD19 modulates B‐lymphocyte activation. Eur. J. Immunol. 40, 1192–1204 (2010).

CAS  PubMed  Article  PubMed Central  Google Scholar 

20.

LeBien, T. W. & Tedder, T. F. B lymphocytes: how they develop and function. Blood 112, 1570–1580 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

21.

Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

22.

Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

23.

Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

24.

Brentjens, R. J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118, 4817–4828 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

25.

Grupp, S. A. et al. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

26.

Maude, S. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

27.

Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33, 540–549 (2015).

CAS  PubMed  Article  Google Scholar 

28.

Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7, 303ra139 (2015).

PubMed  PubMed Central  Article  Google Scholar 

29.

Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

CAS  PubMed  Article  Google Scholar 

30.

Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

PubMed  PubMed Central  Article  Google Scholar 

31.

Turtle, C. J. et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 8, 355ra116 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

32.

Schuster, S. J. et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

33.

Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

34.

Kochenderfer, J. N. et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J. Clin. Oncol. 35, 1803–1813 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

35.

Turtle, C. J. et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J. Clin. Oncol. 35, 3010–3020 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

36.

Locke, F. L. et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol. Ther. 25, 285–295 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

37.

Melenhorst, J. J. et al. Long-term remission of CLL sustained by pauciclonal anti-CD19 chimeric antigen receptor T (CTL019) cell clones. Blood 132 (Suppl. 1), 699 (2018).

Article 

留言 (0)

沒有登入
gif