Glutaminase inhibition in combination with azacytidine in myelodysplastic syndromes: a phase 1b/2 clinical trial and correlative analyses

Altman, B. J., Stine, Z. E. & Dang, C. V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 619–634 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cantor, J. R. & Sabatini, D. M. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2, 881–898 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schulze, A. & Harris, A. L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364–373 (2012).

Article  CAS  PubMed  Google Scholar 

Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

Article  CAS  PubMed  Google Scholar 

Gross, M. I. et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13, 890–901 (2014).

Article  CAS  PubMed  Google Scholar 

Goto, M. et al. Importance of glutamine metabolism in leukemia cells by energy production through TCA cycle and by redox homeostasis. Cancer Invest. 32, 241–247 (2014).

Article  CAS  PubMed  Google Scholar 

Gregory, M. A. et al. Targeting glutamine metabolism and redox state for leukemia therapy. Clin. Cancer Res. 25, 4079–4090 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dranoff, G., Elion, G. B., Friedman, H. S., Campbell, G. L. & Bigner, D. D. Influence of glutamine on the growth of human glioma and medulloblastoma in culture. Cancer Res. 45, 4077–4081 (1985).

CAS  PubMed  Google Scholar 

Jacque, N. et al. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood 126, 1346–1356 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matre, P. et al. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes. Oncotarget 7, 79722–79735 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Thompson, R. M. et al. Glutaminase inhibitor CB-839 synergizes with carfilzomib in resistant multiple myeloma cells. Oncotarget 8, 35863–35876 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Zacharias, N. M. et al. Assessing metabolic intervention with a glutaminase inhibitor in real-time by hyperpolarized magnetic resonance in acute myeloid leukemia. Mol. Cancer Ther. 18, 1937–1946 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baran, N. et al. Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nat. Commun. 13, 2801 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harding, J. J. et al. A phase I dose-escalation and expansion study of telaglenastat in patients with advanced or metastatic solid tumors. Clin. Cancer Res. 27, 4994–5003 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Albitar, M. et al. Myelodysplastic syndrome is not merely ‘preleukemia’. Blood 100, 791–798 (2002).

Article  CAS  PubMed  Google Scholar 

Ma, X., Does, M., Raza, A. & Mayne, S. T. Myelodysplastic syndromes: incidence and survival in the United States. Cancer 109, 1536–1542 (2007).

Article  PubMed  Google Scholar 

Fenaux, P. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 10, 223–232 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kantarjian, H. et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 109, 52–57 (2007).

Article  CAS  PubMed  Google Scholar 

Prebet, T. et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J. Clin. Oncol. 29, 3322–3327 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jabbour, E. et al. Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. Cancer 116, 3830–3834 (2010).

Article  CAS  PubMed  Google Scholar 

Gerstung, M. et al. Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes. Nat. Commun. 6, 5901 (2015).

Article  CAS  PubMed  Google Scholar 

Nguyen, T. T., Ramachandran, S., Hill, M. J. & Cerione, R. A. High-resolution structures of mitochondrial glutaminase C tetramers indicate conformational changes upon phosphate binding. J. Biol. Chem. 298, 101564 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benito, J. et al. Hypoxia-activated prodrug TH-302 targets hypoxic bone marrow niches in preclinical leukemia models. Clin. Cancer Res. 22, 1687–1698 (2016).

Article  CAS  PubMed  Google Scholar 

Daemen, A. et al. Pan-cancer metabolic signature predicts co-dependency on glutaminase and de novo glutathione synthesis linked to a high-mesenchymal cell state. Cell Metab. 28, 383–399 (2018).

Article  CAS  PubMed  Google Scholar 

Wise, D. R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl Acad. Sci. USA 108, 19611–19616 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Los Santos-Jimenez, J. et al. Metabolic adjustments following glutaminase inhibition by CB-839 in glioblastoma cell lines. Cancers (Basel) 15, 531 (2023).

Article  Google Scholar 

Shastri, A. et al. Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells. J. Clin. Invest. 128, 5479–5488 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Chen, J. et al. Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat. Med. 25, 103–110 (2019).

Article  CAS  PubMed  Google Scholar 

Yoo, H. C. et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 31, 267–283 (2020).

Article  CAS  PubMed  Google Scholar 

Li, Y.

留言 (0)

沒有登入
gif