Targeting therapy-persistent residual disease

Turke, A. B. et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17, 77–88 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su, K.-Y. et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J. Clin. Oncol. 30, 433–440 (2012).

Article  CAS  PubMed  Google Scholar 

Ye, X. et al. High T790M detection rate in TKI-naive NSCLC with EGFR sensitive mutation: truth or artifact? J. Thorac. Oncol. 8, 1118–1120 (2013).

Article  PubMed  Google Scholar 

Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramirez, M. et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 7, 10690 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berger, A. J. et al. IRS1 phosphorylation underlies the non-stochastic probability of cancer cells to persist during EGFR inhibition therapy. Nat. Cancer 2, 1055–1070 (2021).

Article  Google Scholar 

Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Shi, H. et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4, 80–93 (2014).

Article  CAS  PubMed  Google Scholar 

Marcoux, N. et al. EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J. Clin. Oncol. 37, 278–285 (2019).

Article  CAS  PubMed  Google Scholar 

Tsai, Y. S. et al. Rapid idiosyncratic mechanisms of clinical resistance to KRAS G12C inhibition. J. Clin. Invest. 132, e155523 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Awad, M. M. et al. Acquired resistance to KRASG12C inhibition in cancer. N. Engl. J. Med. 384, 2382–2393 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maynard, A. et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182, 1232–1251 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vokes, N. I. et al. Concurrent TP53 mutations facilitate resistance evolution in EGFR-mutant lung adenocarcinoma. J. Thorac. Oncol. 17, 779–792 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryl, T. et al. Cell-cycle position of single MYC-driven cancer cells dictates their susceptibility to a chemotherapeutic drug. Cell Syst. 5, 237–250 (2017).

Article  CAS  PubMed  Google Scholar 

Hastings, J. F. et al. Memory of stochastic single-cell apoptotic signaling promotes chemoresistance in neuroblastoma. Sci. Adv. 9, eabp8314 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, D. K. et al. Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Mol. Syst. Biol. 6, 369 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Min, M. & Spencer, S. L. Spontaneously slow-cycling subpopulations of human cells originate from activation of stress-response pathways. PLoS Biol. 17, e3000178 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, X. et al. Modulating environmental signals to reveal mechanisms and vulnerabilities of cancer persisters. Sci. Adv. 8, eabi7711 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Obenauf, A. C. et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 520, 368–372 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmitt, M. et al. Colon tumour cell death causes mTOR dependence by paracrine P2X4 stimulation. Nature 612, 347–353 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pu, Y. et al. Drug-tolerant persister cells in cancer: the cutting edges and future directions. Nat. Rev. Clin. Oncol. 20, 799–813 (2023).

Shen, S., Vagner, S. & Robert, C. Persistent cancer cells: the deadly survivors. Cell 183, 860–874 (2020).

Article  CAS  PubMed  Google Scholar 

Cabanos, H. F. & Hata, A. N. Emerging insights into targeted therapy-tolerant persister cells in cancer. Cancers 13, 2666 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conti, G. D., Dias, M. H. & Bernards, R. Fighting drug resistance through the targeting of drug-tolerant persister cells. Cancers 13, 1118 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Mikubo, M., Inoue, Y., Liu, G. & Tsao, M.-S. Mechanism of drug tolerant persister cancer cells: the landscape and clinical implication for therapy. J. Thorac. Oncol. 16, 1798–1809 (2021).

Article  CAS  PubMed  Google Scholar 

Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855 (2018).

Article  CAS  PubMed  Google Scholar 

Zhou, X. et al. Persister cell phenotypes contribute to poor patient outcomes after neoadjuvant chemotherapy in PDAC. Nat. Cancer 4, 1362–1381 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isozaki, H. et al. Therapy-induced APOBEC3A drives evolution of persistent cancer cells. Nature 620, 393–401 (2023).

Russo, M. et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science 366, 1473–1480 (2019).

Article  CAS  PubMed  Google Scholar 

Goyal, Y. et al. Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells. Nature 620, 651–659 (2023).

Article  CAS 

留言 (0)

沒有登入
gif